Skip to main content
Erschienen in: Inflammation 5/2023

13.06.2023 | RESEARCH

Acetyl-11-Keto-Beta-Boswellic Acid Has Therapeutic Benefits for NAFLD Rat Models That Were Given a High Fructose Diet by Ameliorating Hepatic Inflammation and Lipid Metabolism

verfasst von: Reza Ataei Kachouei, Alireza Doagoo, Maral Jalilzadeh, Seyyed Hossein Khatami, Shima Rajaei, Ali Jahanbazi Jahan-Abad, Farzaneh Salmani, Roya Pakrad, Somayeh Mahmoodi Baram, Mitra Nourbakhsh, Mohammad-Amin Abdollahifar, Hojjat Allah Abbaszadeh, Shokoofeh Noori, Mitra Rezaei, Meisam Mahdavi, Mohammad Reza Shahmohammadi, Saeed Karima

Erschienen in: Inflammation | Ausgabe 5/2023

Einloggen, um Zugang zu erhalten

Abstract

Acetyl-11-keto-beta-boswellic acid (AKBA), a potent anti-inflammatory compound purified from Boswellia species, was investigated in a preclinical study for its potential in preventing and treating non-alcoholic fatty liver disease (NAFLD), the most common chronic inflammatory liver disorder. The study involved thirty-six male Wistar rats, equally divided into prevention and treatment groups. In the prevention group, rats were given a high fructose diet (HFrD) and treated with AKBA for 6 weeks, while in the treatment group, rats were fed HFrD for 6 weeks and then given a normal diet with AKBA for 2 weeks. At the end of the study, various parameters were analyzed including liver tissues and serum levels of insulin, leptin, adiponectin, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta (TGF-β), interferon gamma (INF-ϒ), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). Additionally, the expression levels of genes related to the inflammasome complex and peroxisome proliferator-activated receptor gamma (PPAR-ϒ), as well as the levels of phosphorylated and non-phosphorylated AMP-activated protein kinase alpha-1 (AMPK-α1) protein, were measured. The results showed that AKBA improved NAFLD-related serum parameters and inflammatory markers and suppressed PPAR-ϒ and inflammasome complex-related genes involved in hepatic steatosis in both groups. Additionally, AKBA prevented the reduction of the active and inactive forms of AMPK-α1 in the prevention group, which is a cellular energy regulator that helps suppress NAFLD progression. In conclusion, AKBA has a beneficial effect on preventing and avoiding the progression of NAFLD by preserving lipid metabolism, improving hepatic steatosis, and suppressing liver inflammation.
Literatur
1.
Zurück zum Zitat Younossi, Z.M., A.B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, and M. Wymer. 2016. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64: 73–84.PubMed Younossi, Z.M., A.B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, and M. Wymer. 2016. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64: 73–84.PubMed
2.
Zurück zum Zitat Lee, Y.A., and S.L. Friedman. 2022. Inflammatory and fibrotic mechanisms in NAFLD—Implications for new treatment strategies. Journal of Internal Medicine 291: 11–31.PubMed Lee, Y.A., and S.L. Friedman. 2022. Inflammatory and fibrotic mechanisms in NAFLD—Implications for new treatment strategies. Journal of Internal Medicine 291: 11–31.PubMed
3.
Zurück zum Zitat Barbieri, E., N. Santoro, G.R. and Umano. 2023. Clinical features and metabolic complications for non-alcoholic fatty liver disease (NAFLD) in youth with obesity. Frontiers in Endocrinology 14. Barbieri, E., N. Santoro, G.R. and Umano. 2023. Clinical features and metabolic complications for non-alcoholic fatty liver disease (NAFLD) in youth with obesity. Frontiers in Endocrinology 14.
4.
Zurück zum Zitat Stefan, N., H.-U. Häring, and K. Cusi. 2019. Non-alcoholic fatty liver disease: Causes, diagnosis, cardiometabolic consequences, and treatment strategies. The lancet Diabetes & endocrinology 7: 313–324. Stefan, N., H.-U. Häring, and K. Cusi. 2019. Non-alcoholic fatty liver disease: Causes, diagnosis, cardiometabolic consequences, and treatment strategies. The lancet Diabetes & endocrinology 7: 313–324.
5.
Zurück zum Zitat He, L., G.S. Babar, J.M. Redel, S.L. Young, C.E. Chagas, W.V. Moore, and Y. Yan. 2021. Fructose intake: metabolism and role in diseases. In Sugar Intake-Risks and Benefits and the Global Diabetes Epidemic: IntechOpen. He, L., G.S. Babar, J.M. Redel, S.L. Young, C.E. Chagas, W.V. Moore, and Y. Yan. 2021. Fructose intake: metabolism and role in diseases. In Sugar Intake-Risks and Benefits and the Global Diabetes Epidemic: IntechOpen.
6.
Zurück zum Zitat Pereira, R.M., J.D. Botezelli, K.C. da Cruz Rodrigues, R.A. Mekary, D.E. Cintra, J.R. Pauli, A.S.R. Da Silva, E.R. Ropelle, and L.P. De Moura. 2017. Fructose consumption in the development of obesity and the effects of different protocols of physical exercise on the hepatic metabolism. Nutrients 9: 405.PubMedPubMedCentral Pereira, R.M., J.D. Botezelli, K.C. da Cruz Rodrigues, R.A. Mekary, D.E. Cintra, J.R. Pauli, A.S.R. Da Silva, E.R. Ropelle, and L.P. De Moura. 2017. Fructose consumption in the development of obesity and the effects of different protocols of physical exercise on the hepatic metabolism. Nutrients 9: 405.PubMedPubMedCentral
7.
Zurück zum Zitat Jegatheesan, P., and J.P. De Bandt. 2017. Fructose and NAFLD: The multifaceted aspects of fructose metabolism. Nutrients 9: 230.PubMedPubMedCentral Jegatheesan, P., and J.P. De Bandt. 2017. Fructose and NAFLD: The multifaceted aspects of fructose metabolism. Nutrients 9: 230.PubMedPubMedCentral
8.
Zurück zum Zitat Federico, A., V. Rosato, M. Masarone, P. Torre, M. Dallio, M. Romeo, and M. Persico. 2021. The role of fructose in non-alcoholic steatohepatitis: Old relationship and new insights. Nutrients 13: 1314.PubMedPubMedCentral Federico, A., V. Rosato, M. Masarone, P. Torre, M. Dallio, M. Romeo, and M. Persico. 2021. The role of fructose in non-alcoholic steatohepatitis: Old relationship and new insights. Nutrients 13: 1314.PubMedPubMedCentral
9.
Zurück zum Zitat Liu, Y., H. Lin, L. Jiang, Q. Shang, L. Yin, J.D. Lin, W.-S. Wu, and L. Rui. 2020. Hepatic Slug epigenetically promotes liver lipogenesis, fatty liver disease, and type 2 diabetes. The Journal of Clinical Investigation 130: 2992–3004.PubMedPubMedCentral Liu, Y., H. Lin, L. Jiang, Q. Shang, L. Yin, J.D. Lin, W.-S. Wu, and L. Rui. 2020. Hepatic Slug epigenetically promotes liver lipogenesis, fatty liver disease, and type 2 diabetes. The Journal of Clinical Investigation 130: 2992–3004.PubMedPubMedCentral
10.
Zurück zum Zitat Baboota, R.K., R. Spinelli, M.C. Erlandsson, B.B. Brandao, M. Lino, H. Yang, A. Mardinoglu, M.I. Bokarewa, J. Boucher, and C.R. Kahn. 2022. Chronic hyperinsulinemia promotes human hepatocyte senescence. Molecular Metabolism 64: 101558.PubMedPubMedCentral Baboota, R.K., R. Spinelli, M.C. Erlandsson, B.B. Brandao, M. Lino, H. Yang, A. Mardinoglu, M.I. Bokarewa, J. Boucher, and C.R. Kahn. 2022. Chronic hyperinsulinemia promotes human hepatocyte senescence. Molecular Metabolism 64: 101558.PubMedPubMedCentral
11.
Zurück zum Zitat Zhang, A.M., E.A. Wellberg, J.L. Kopp, and J.D. Johnson. 2021. Hyperinsulinemia in obesity, inflammation, and cancer. Diabetes & metabolism journal 45: 285–311. Zhang, A.M., E.A. Wellberg, J.L. Kopp, and J.D. Johnson. 2021. Hyperinsulinemia in obesity, inflammation, and cancer. Diabetes & metabolism journal 45: 285–311.
12.
Zurück zum Zitat Jung, U.J., and M.-S. Choi. 2014. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International journal of molecular sciences 15: 6184–6223.PubMedPubMedCentral Jung, U.J., and M.-S. Choi. 2014. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. International journal of molecular sciences 15: 6184–6223.PubMedPubMedCentral
13.
Zurück zum Zitat Longo, M., F. Zatterale, J. Naderi, L. Parrillo, P. Formisano, G.A. Raciti, F. Beguinot, and C. Miele. 2019. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. International journal of molecular sciences 20: 2358.PubMedPubMedCentral Longo, M., F. Zatterale, J. Naderi, L. Parrillo, P. Formisano, G.A. Raciti, F. Beguinot, and C. Miele. 2019. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. International journal of molecular sciences 20: 2358.PubMedPubMedCentral
14.
Zurück zum Zitat Petrescu, M., S.I. Vlaicu, L. Ciumărnean, M.V. Milaciu, C. Mărginean, M. Florea, ȘC. Vesa, and M. Popa. 2022. Chronic inflammation—a link between nonalcoholic fatty liver disease (NAFLD) and dysfunctional adipose tissue. Medicina 58: 641.PubMedPubMedCentral Petrescu, M., S.I. Vlaicu, L. Ciumărnean, M.V. Milaciu, C. Mărginean, M. Florea, ȘC. Vesa, and M. Popa. 2022. Chronic inflammation—a link between nonalcoholic fatty liver disease (NAFLD) and dysfunctional adipose tissue. Medicina 58: 641.PubMedPubMedCentral
15.
Zurück zum Zitat Paradies, G., V. Paradies, F.M. Ruggiero, and G. Petrosillo. 2014. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World journal of gastroenterology: WJG 20: 14205.PubMedPubMedCentral Paradies, G., V. Paradies, F.M. Ruggiero, and G. Petrosillo. 2014. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World journal of gastroenterology: WJG 20: 14205.PubMedPubMedCentral
16.
Zurück zum Zitat Yu, L., W. Hong, S. Lu, Y. Li, Y. Guan, X. Weng, and Z. Feng. 2022. The NLRP3 inflammasome in non-alcoholic fatty liver disease and steatohepatitis: Therapeutic targets and treatment. Frontiers in Pharmacology 13: 682. Yu, L., W. Hong, S. Lu, Y. Li, Y. Guan, X. Weng, and Z. Feng. 2022. The NLRP3 inflammasome in non-alcoholic fatty liver disease and steatohepatitis: Therapeutic targets and treatment. Frontiers in Pharmacology 13: 682.
17.
Zurück zum Zitat Knorr, J., A. Wree, F. Tacke, A.E. Feldstein. 2020. The NLRP3 inflammasome in alcoholic and nonalcoholic steatohepatitis. Presented at Seminars in liver disease. Knorr, J., A. Wree, F. Tacke, A.E. Feldstein. 2020. The NLRP3 inflammasome in alcoholic and nonalcoholic steatohepatitis. Presented at Seminars in liver disease.
18.
Zurück zum Zitat Gehrke, N., and J.M. Schattenberg. 2020. Metabolic inflammation—a role for hepatic inflammatory pathways as drivers of comorbidities in nonalcoholic fatty liver disease? Gastroenterology 158 (1929–47): e6. Gehrke, N., and J.M. Schattenberg. 2020. Metabolic inflammation—a role for hepatic inflammatory pathways as drivers of comorbidities in nonalcoholic fatty liver disease? Gastroenterology 158 (1929–47): e6.
19.
Zurück zum Zitat Smith, B.K., K. Marcinko, E.M. Desjardins, J.S. Lally, R.J. Ford, and G.R. Steinberg. 2016. Treatment of nonalcoholic fatty liver disease: Role of AMPK. American Journal of Physiology-Endocrinology and Metabolism 311: E730–E740.PubMed Smith, B.K., K. Marcinko, E.M. Desjardins, J.S. Lally, R.J. Ford, and G.R. Steinberg. 2016. Treatment of nonalcoholic fatty liver disease: Role of AMPK. American Journal of Physiology-Endocrinology and Metabolism 311: E730–E740.PubMed
20.
Zurück zum Zitat Zhao, P., and A.R. Saltiel. 2020. From overnutrition to liver injury: AMP-activated protein kinase in nonalcoholic fatty liver diseases. Journal of Biological Chemistry 295: 12279–12289.PubMedPubMedCentral Zhao, P., and A.R. Saltiel. 2020. From overnutrition to liver injury: AMP-activated protein kinase in nonalcoholic fatty liver diseases. Journal of Biological Chemistry 295: 12279–12289.PubMedPubMedCentral
21.
Zurück zum Zitat Fang, C., J. Pan, N. Qu, Y. Lei, J. Han, J. Zhang, D. Han. 2022. The AMPK pathway in fatty liver disease. Frontiers in Physiology 13. Fang, C., J. Pan, N. Qu, Y. Lei, J. Han, J. Zhang, D. Han. 2022. The AMPK pathway in fatty liver disease. Frontiers in Physiology 13.
22.
Zurück zum Zitat Liss, K.H., and B.N. Finck. 2017. PPARs and nonalcoholic fatty liver disease. Biochimie 136: 65–74.PubMed Liss, K.H., and B.N. Finck. 2017. PPARs and nonalcoholic fatty liver disease. Biochimie 136: 65–74.PubMed
23.
Zurück zum Zitat Ducheix, S., A. Montagner, V. Theodorou, L. Ferrier, and H. Guillou. 2013. The liver X receptor: A master regulator of the gut–liver axis and a target for non alcoholic fatty liver disease. Biochemical pharmacology 86: 96–105.PubMed Ducheix, S., A. Montagner, V. Theodorou, L. Ferrier, and H. Guillou. 2013. The liver X receptor: A master regulator of the gut–liver axis and a target for non alcoholic fatty liver disease. Biochemical pharmacology 86: 96–105.PubMed
24.
Zurück zum Zitat Fleischman, M.W., M. Budoff, I. Zeb, D. Li, and T. Foster. 2014. NAFLD prevalence differs among hispanic subgroups: The Multi-Ethnic Study of Atherosclerosis. World journal of gastroenterology: WJG 20: 4987.PubMedPubMedCentral Fleischman, M.W., M. Budoff, I. Zeb, D. Li, and T. Foster. 2014. NAFLD prevalence differs among hispanic subgroups: The Multi-Ethnic Study of Atherosclerosis. World journal of gastroenterology: WJG 20: 4987.PubMedPubMedCentral
25.
Zurück zum Zitat Xu, Y., W. Guo, C. Zhang, F. Chen, H.Y. Tan, S. Li, N. Wang, and Y. Feng. 2020. Herbal medicine in the treatment of non-alcoholic fatty liver diseases-efficacy, action mechanism, and clinical application. Frontiers in Pharmacology 11: 601.PubMedPubMedCentral Xu, Y., W. Guo, C. Zhang, F. Chen, H.Y. Tan, S. Li, N. Wang, and Y. Feng. 2020. Herbal medicine in the treatment of non-alcoholic fatty liver diseases-efficacy, action mechanism, and clinical application. Frontiers in Pharmacology 11: 601.PubMedPubMedCentral
26.
Zurück zum Zitat Tian, Y., J. Ma, W. Wang, L. Zhang, J. Xu, K. Wang, and D. Li. 2016. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver. Molecular and cellular biochemistry 422: 75–84.PubMed Tian, Y., J. Ma, W. Wang, L. Zhang, J. Xu, K. Wang, and D. Li. 2016. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver. Molecular and cellular biochemistry 422: 75–84.PubMed
27.
Zurück zum Zitat Jiang, J., L. Yan, Z. Shi, L. Wang, L. Shan, and T. Efferth. 2019. Hepatoprotective and anti-inflammatory effects of total flavonoids of Qu Zhi Ke (peel of Citrus changshan-huyou) on non-alcoholic fatty liver disease in rats via modulation of NF-κB and MAPKs. Phytomedicine 64: 153082.PubMed Jiang, J., L. Yan, Z. Shi, L. Wang, L. Shan, and T. Efferth. 2019. Hepatoprotective and anti-inflammatory effects of total flavonoids of Qu Zhi Ke (peel of Citrus changshan-huyou) on non-alcoholic fatty liver disease in rats via modulation of NF-κB and MAPKs. Phytomedicine 64: 153082.PubMed
28.
Zurück zum Zitat Roy, N.K., D. Parama, K. Banik, D. Bordoloi, A.K. Devi, K.K. Thakur, G. Padmavathi, M. Shakibaei, L. Fan, and G. Sethi. 2019. An update on pharmacological potential of boswellic acids against chronic diseases. International journal of molecular sciences 20: 4101.PubMedPubMedCentral Roy, N.K., D. Parama, K. Banik, D. Bordoloi, A.K. Devi, K.K. Thakur, G. Padmavathi, M. Shakibaei, L. Fan, and G. Sethi. 2019. An update on pharmacological potential of boswellic acids against chronic diseases. International journal of molecular sciences 20: 4101.PubMedPubMedCentral
29.
Zurück zum Zitat Sharma, T., and S. Jana. 2020. Boswellic acids as natural anticancer medicine: Precious gift to humankind. Journal of Herbal Medicine 20: 100313. Sharma, T., and S. Jana. 2020. Boswellic acids as natural anticancer medicine: Precious gift to humankind. Journal of Herbal Medicine 20: 100313.
30.
Zurück zum Zitat Siddiqui, A., Z. Shah, R.N. Jahan, I. Othman, and Y. Kumari. 2021. Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory properties. Biomedicine & Pharmacotherapy 144: 112250. Siddiqui, A., Z. Shah, R.N. Jahan, I. Othman, and Y. Kumari. 2021. Mechanistic role of boswellic acids in Alzheimer’s disease: Emphasis on anti-inflammatory properties. Biomedicine & Pharmacotherapy 144: 112250.
31.
Zurück zum Zitat Kawasaki, T., K. Igarashi, T. Koeda, K. Sugimoto, K. Nakagawa, S. Hayashi, R. Yamaji, H. Inui, T. Fukusato, and T. Yamanouchi. 2009. Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis. The Journal of nutrition 139: 2067–2071.PubMed Kawasaki, T., K. Igarashi, T. Koeda, K. Sugimoto, K. Nakagawa, S. Hayashi, R. Yamaji, H. Inui, T. Fukusato, and T. Yamanouchi. 2009. Rats fed fructose-enriched diets have characteristics of nonalcoholic hepatic steatosis. The Journal of nutrition 139: 2067–2071.PubMed
32.
Zurück zum Zitat Upadhayay, S., S. Mehan, A. Prajapati, P. Sethi, M. Suri, A. Zawawi, M.N. Almashjary, and S. Tabrez. 2022. Nrf2/HO-1 signaling stimulation through acetyl-11-keto-beta-boswellic acid (AKBA) provides neuroprotection in ethidium bromide-induced experimental model of multiple sclerosis. Genes 13: 1324.PubMedPubMedCentral Upadhayay, S., S. Mehan, A. Prajapati, P. Sethi, M. Suri, A. Zawawi, M.N. Almashjary, and S. Tabrez. 2022. Nrf2/HO-1 signaling stimulation through acetyl-11-keto-beta-boswellic acid (AKBA) provides neuroprotection in ethidium bromide-induced experimental model of multiple sclerosis. Genes 13: 1324.PubMedPubMedCentral
33.
Zurück zum Zitat Li, W., J. Liu, W. Fu, X. Zheng, L. Ren, S. Liu, J. Wang, T. Ji, and G. Du. 2018. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. Journal of Experimental & Clinical Cancer Research 37: 1–15. Li, W., J. Liu, W. Fu, X. Zheng, L. Ren, S. Liu, J. Wang, T. Ji, and G. Du. 2018. 3-O-acetyl-11-keto-β-boswellic acid exerts anti-tumor effects in glioblastoma by arresting cell cycle at G2/M phase. Journal of Experimental & Clinical Cancer Research 37: 1–15.
34.
Zurück zum Zitat Meratan, A.A., and M. Nemat-Gorgani. 2012. Mitochondrial membrane permeabilization upon interaction with lysozyme fibrillation products: role of mitochondrial heterogeneity. Biochimica et Biophysica Acta (BBA)-Biomembranes 1818: 2149–57. Meratan, A.A., and M. Nemat-Gorgani. 2012. Mitochondrial membrane permeabilization upon interaction with lysozyme fibrillation products: role of mitochondrial heterogeneity. Biochimica et Biophysica Acta (BBA)-Biomembranes 1818: 2149–57.
35.
Zurück zum Zitat Sottacasa, G., B. Kuylenstierna, L. Ernster, and A. Bergstrand. 1967. Separation and some enzymatic properties of the inner and outer membrane of rat liver mitochondria. Methods in Enzymology 10: 457. Sottacasa, G., B. Kuylenstierna, L. Ernster, and A. Bergstrand. 1967. Separation and some enzymatic properties of the inner and outer membrane of rat liver mitochondria. Methods in Enzymology 10: 457.
36.
Zurück zum Zitat Müller-Kraft, G., and W. Babel. 1990. [53] Citrate synthases from methylotrophs. Methods in enzymology 188: 350–354. Müller-Kraft, G., and W. Babel. 1990. [53] Citrate synthases from methylotrophs. Methods in enzymology 188: 350–354.
37.
Zurück zum Zitat Xu, J., J. Shen, R. Yuan, B. Jia, Y. Zhang, S. Wang, Y. Zhang, M. Liu, T. Wang. 2021. Mitochondrial targeting therapeutics: promising role of natural products in non-alcoholic fatty liver disease. Frontiers in Pharmacology 12. Xu, J., J. Shen, R. Yuan, B. Jia, Y. Zhang, S. Wang, Y. Zhang, M. Liu, T. Wang. 2021. Mitochondrial targeting therapeutics: promising role of natural products in non-alcoholic fatty liver disease. Frontiers in Pharmacology 12.
38.
Zurück zum Zitat Minj, E., S. Upadhayay, and S. Mehan. 2021. Nrf2/HO-1 signaling activator acetyl-11-keto-beta boswellic acid (AKBA)-mediated neuroprotection in methyl mercury-induced experimental model of ALS. Neurochemical research 46: 2867–2884.PubMed Minj, E., S. Upadhayay, and S. Mehan. 2021. Nrf2/HO-1 signaling activator acetyl-11-keto-beta boswellic acid (AKBA)-mediated neuroprotection in methyl mercury-induced experimental model of ALS. Neurochemical research 46: 2867–2884.PubMed
39.
Zurück zum Zitat Marefati, N., F. Beheshti, S. Memarpour, R. Bayat, M.N. Shafei, H.R. Sadeghnia, H. Ghazavi, and M. Hosseini. 2020. The effects of acetyl-11-keto-β-boswellic acid on brain cytokines and memory impairment induced by lipopolysaccharide in rats. Cytokine 131: 155107.PubMed Marefati, N., F. Beheshti, S. Memarpour, R. Bayat, M.N. Shafei, H.R. Sadeghnia, H. Ghazavi, and M. Hosseini. 2020. The effects of acetyl-11-keto-β-boswellic acid on brain cytokines and memory impairment induced by lipopolysaccharide in rats. Cytokine 131: 155107.PubMed
40.
Zurück zum Zitat Ahmed, M.A., A.A. Ahmed, and E.M. El Morsy. 2020. Acetyl-11-keto-β-boswellic acid prevents testicular torsion/detorsion injury in rats by modulating 5-LOX/LTB4 and p38-MAPK/JNK/Bax/Caspase-3 pathways. Life Sciences 260: 118472.PubMed Ahmed, M.A., A.A. Ahmed, and E.M. El Morsy. 2020. Acetyl-11-keto-β-boswellic acid prevents testicular torsion/detorsion injury in rats by modulating 5-LOX/LTB4 and p38-MAPK/JNK/Bax/Caspase-3 pathways. Life Sciences 260: 118472.PubMed
41.
Zurück zum Zitat Moussaieff, A., and R. Mechoulam. 2009. Boswellia resin: From religious ceremonies to medical uses; a review of in-vitro, in-vivo and clinical trials. Journal of Pharmacy and Pharmacology 61: 1281–1293. Moussaieff, A., and R. Mechoulam. 2009. Boswellia resin: From religious ceremonies to medical uses; a review of in-vitro, in-vivo and clinical trials. Journal of Pharmacy and Pharmacology 61: 1281–1293.
42.
Zurück zum Zitat Bini Araba, A., N. Ur Rehman, A. Al-Araimi, S. Al-Hashmi, S. Al-Shidhani, R. Csuk, H. Hussain, A. Al-Harrasi, and F. Zadjali. 2021. New derivatives of 11-keto-β-boswellic acid (KBA) induce apoptosis in breast and prostate cancers cells. Natural Product Research 35: 707–716.PubMed Bini Araba, A., N. Ur Rehman, A. Al-Araimi, S. Al-Hashmi, S. Al-Shidhani, R. Csuk, H. Hussain, A. Al-Harrasi, and F. Zadjali. 2021. New derivatives of 11-keto-β-boswellic acid (KBA) induce apoptosis in breast and prostate cancers cells. Natural Product Research 35: 707–716.PubMed
43.
Zurück zum Zitat Taherzadeh, D., V. Baradaran Rahimi, H. Amiri, S. Ehtiati, R. Yahyazadeh, S.I. Hashemy, and V.R. Askari. 2022. Acetyl-11-Keto-β-Boswellic acid (AKBA) prevents lipopolysaccharide-induced inflammation and cytotoxicity on H9C2 cells. Evidence-based Complementary and Alternative Medicine 2022. Taherzadeh, D., V. Baradaran Rahimi, H. Amiri, S. Ehtiati, R. Yahyazadeh, S.I. Hashemy, and V.R. Askari. 2022. Acetyl-11-Keto-β-Boswellic acid (AKBA) prevents lipopolysaccharide-induced inflammation and cytotoxicity on H9C2 cells. Evidence-based Complementary and Alternative Medicine 2022.
44.
Zurück zum Zitat Nassir, F., and J.A. Ibdah. 2014. Role of mitochondria in nonalcoholic fatty liver disease. International journal of molecular sciences 15: 8713–8742.PubMedPubMedCentral Nassir, F., and J.A. Ibdah. 2014. Role of mitochondria in nonalcoholic fatty liver disease. International journal of molecular sciences 15: 8713–8742.PubMedPubMedCentral
45.
Zurück zum Zitat Monzio Compagnoni, G., A. Di Fonzo, S. Corti, G.P. Comi, N. Bresolin, and E. Masliah. 2020. The role of mitochondria in neurodegenerative diseases: The lesson from Alzheimer’s disease and Parkinson’s disease. Molecular neurobiology 57: 2959–2980.PubMed Monzio Compagnoni, G., A. Di Fonzo, S. Corti, G.P. Comi, N. Bresolin, and E. Masliah. 2020. The role of mitochondria in neurodegenerative diseases: The lesson from Alzheimer’s disease and Parkinson’s disease. Molecular neurobiology 57: 2959–2980.PubMed
46.
Zurück zum Zitat Kang, W., M. Suzuki, T. Saito, and K. Miyado. 2021. Emerging role of TCA cycle-related enzymes in human diseases. International Journal of Molecular Sciences 22: 13057.PubMedPubMedCentral Kang, W., M. Suzuki, T. Saito, and K. Miyado. 2021. Emerging role of TCA cycle-related enzymes in human diseases. International Journal of Molecular Sciences 22: 13057.PubMedPubMedCentral
47.
Zurück zum Zitat Santamarina, A.B., M. Carvalho-Silva, L.M. Gomes, M.H. Okuda, A.A. Santana, E.L. Streck, M. Seelaender, C.M.O. do Nascimento, E.B. Ribeiro, and F.S. Lira. 2015. Decaffeinated green tea extract rich in epigallocatechin-3-gallate prevents fatty liver disease by increased activities of mitochondrial respiratory chain complexes in diet-induced obesity mice. The Journal of Nutritional Biochemistry 26: 1348–1356.PubMed Santamarina, A.B., M. Carvalho-Silva, L.M. Gomes, M.H. Okuda, A.A. Santana, E.L. Streck, M. Seelaender, C.M.O. do Nascimento, E.B. Ribeiro, and F.S. Lira. 2015. Decaffeinated green tea extract rich in epigallocatechin-3-gallate prevents fatty liver disease by increased activities of mitochondrial respiratory chain complexes in diet-induced obesity mice. The Journal of Nutritional Biochemistry 26: 1348–1356.PubMed
48.
Zurück zum Zitat Ferramosca, A., A. Conte, and V. Zara. 2015. Krill oil ameliorates mitochondrial dysfunctions in rats treated with high-fat diet. BioMed Research International 2015. Ferramosca, A., A. Conte, and V. Zara. 2015. Krill oil ameliorates mitochondrial dysfunctions in rats treated with high-fat diet. BioMed Research International 2015.
49.
Zurück zum Zitat Ma, Y., M. Gao, and D. Liu. 2016. Alternating diet as a preventive and therapeutic intervention for high fat diet-induced metabolic disorder. Scientific reports 6: 1–14. Ma, Y., M. Gao, and D. Liu. 2016. Alternating diet as a preventive and therapeutic intervention for high fat diet-induced metabolic disorder. Scientific reports 6: 1–14.
50.
Zurück zum Zitat Skat-Rørdam, J., D. Højland Ipsen, J. Lykkesfeldt, and P. Tveden-Nyborg. 2019. A role of peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease. Basic & clinical pharmacology & toxicology 124: 528–537. Skat-Rørdam, J., D. Højland Ipsen, J. Lykkesfeldt, and P. Tveden-Nyborg. 2019. A role of peroxisome proliferator-activated receptor γ in non-alcoholic fatty liver disease. Basic & clinical pharmacology & toxicology 124: 528–537.
51.
Zurück zum Zitat Zhang, Y.-L., A. Hernandez-Ono, P. Siri, S. Weisberg, D. Conlon, M.J. Graham, R.M. Crooke, L.-S. Huang, and H.N. Ginsberg. 2006. Aberrant hepatic expression of PPARγ2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis. Journal of Biological Chemistry 281: 37603–37615.PubMed Zhang, Y.-L., A. Hernandez-Ono, P. Siri, S. Weisberg, D. Conlon, M.J. Graham, R.M. Crooke, L.-S. Huang, and H.N. Ginsberg. 2006. Aberrant hepatic expression of PPARγ2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis. Journal of Biological Chemistry 281: 37603–37615.PubMed
52.
Zurück zum Zitat Awad, A.S., E.N. Abd Al Haleem, W.M. El-Bakly, and M.A. Sherief. 2016. Thymoquinone alleviates nonalcoholic fatty liver disease in rats via suppression of oxidative stress, inflammation, apoptosis. Naunyn-Schmiedeberg’s archives of pharmacology 389: 381–391.PubMed Awad, A.S., E.N. Abd Al Haleem, W.M. El-Bakly, and M.A. Sherief. 2016. Thymoquinone alleviates nonalcoholic fatty liver disease in rats via suppression of oxidative stress, inflammation, apoptosis. Naunyn-Schmiedeberg’s archives of pharmacology 389: 381–391.PubMed
53.
Zurück zum Zitat Chyau, C.-C., H.-F. Wang, W.-J. Zhang, C.-C. Chen, S.-H. Huang, C.-C. Chang, and R.Y. Peng. 2020. Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway. International Journal of Molecular Sciences 21: 360.PubMedPubMedCentral Chyau, C.-C., H.-F. Wang, W.-J. Zhang, C.-C. Chen, S.-H. Huang, C.-C. Chang, and R.Y. Peng. 2020. Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway. International Journal of Molecular Sciences 21: 360.PubMedPubMedCentral
54.
Zurück zum Zitat Gao, H., T. Guan, C. Li, G. Zuo, J. Yamahara, J. Wang, and Y. Li. 2012. Treatment with ginger ameliorates fructose-induced Fatty liver and hypertriglyceridemia in rats: modulation of the hepatic carbohydrate response element-binding protein-mediated pathway. Evidence-Based Complementary and Alternative Medicine 2012. Gao, H., T. Guan, C. Li, G. Zuo, J. Yamahara, J. Wang, and Y. Li. 2012. Treatment with ginger ameliorates fructose-induced Fatty liver and hypertriglyceridemia in rats: modulation of the hepatic carbohydrate response element-binding protein-mediated pathway. Evidence-Based Complementary and Alternative Medicine 2012.
55.
Zurück zum Zitat Li, X., Z. Xu, S. Wang, H. Guo, S. Dong, T. Wang, L. Zhang, and Z. Jiang. 2016. Emodin ameliorates hepatic steatosis through endoplasmic reticulum–stress sterol regulatory element-binding protein 1c pathway in liquid fructose-feeding rats. Hepatology Research 46: E105–E117.PubMed Li, X., Z. Xu, S. Wang, H. Guo, S. Dong, T. Wang, L. Zhang, and Z. Jiang. 2016. Emodin ameliorates hepatic steatosis through endoplasmic reticulum–stress sterol regulatory element-binding protein 1c pathway in liquid fructose-feeding rats. Hepatology Research 46: E105–E117.PubMed
56.
Zurück zum Zitat Trepiana, J., I. Milton-Laskibar, S. Gómez-Zorita, I. Eseberri, M. González, A. Fernández-Quintela, and M.P. Portillo. 2018. Involvement of 5′ AMP-activated protein kinase (AMPK) in the effects of resveratrol on liver steatosis. International journal of molecular sciences 19: 3473.PubMedPubMedCentral Trepiana, J., I. Milton-Laskibar, S. Gómez-Zorita, I. Eseberri, M. González, A. Fernández-Quintela, and M.P. Portillo. 2018. Involvement of 5′ AMP-activated protein kinase (AMPK) in the effects of resveratrol on liver steatosis. International journal of molecular sciences 19: 3473.PubMedPubMedCentral
57.
Zurück zum Zitat Boudaba, N., A. Marion, C. Huet, R. Pierre, B. Viollet, and M. Foretz. 2018. AMPK re-activation suppresses hepatic steatosis but its downregulation does not promote fatty liver development. eBioMedicine 28: 194–209.PubMedPubMedCentral Boudaba, N., A. Marion, C. Huet, R. Pierre, B. Viollet, and M. Foretz. 2018. AMPK re-activation suppresses hepatic steatosis but its downregulation does not promote fatty liver development. eBioMedicine 28: 194–209.PubMedPubMedCentral
58.
Zurück zum Zitat Shen, T., B. Xu, T. Lei, L. Chen, C. Zhang, and Z. Ni. 2018. Sitagliptin reduces insulin resistance and improves rat liver steatosis via the SIRT1/AMPKα pathway. Experimental and therapeutic medicine 16: 3121–3128.PubMedPubMedCentral Shen, T., B. Xu, T. Lei, L. Chen, C. Zhang, and Z. Ni. 2018. Sitagliptin reduces insulin resistance and improves rat liver steatosis via the SIRT1/AMPKα pathway. Experimental and therapeutic medicine 16: 3121–3128.PubMedPubMedCentral
59.
Zurück zum Zitat ALTamimi JZ, Alshammari GM, AlFaris NA, Alagal RI, Aljabryn DH, Albekairi NA, Alkhateeb MA, and Yahya MA. 2022. Ellagic acid protects against non-alcoholic fatty liver disease in streptozotocin-diabetic rats by activating AMPK. Pharmaceutical Biology 60: 25–37. ALTamimi JZ, Alshammari GM, AlFaris NA, Alagal RI, Aljabryn DH, Albekairi NA, Alkhateeb MA, and Yahya MA. 2022. Ellagic acid protects against non-alcoholic fatty liver disease in streptozotocin-diabetic rats by activating AMPK. Pharmaceutical Biology 60: 25–37.
60.
Zurück zum Zitat Shiwa, M., M. Yoneda, H. Okubo, H. Ohno, K. Kobuke, Y. Monzen, R. Kishimoto, Y. Nakatsu, T. Asano, and N. Kohno. 2015. Distinct time course of the decrease in hepatic AMP-activated protein kinase and Akt phosphorylation in mice fed a high fat diet. PLoS ONE 10: e0135554.PubMedPubMedCentral Shiwa, M., M. Yoneda, H. Okubo, H. Ohno, K. Kobuke, Y. Monzen, R. Kishimoto, Y. Nakatsu, T. Asano, and N. Kohno. 2015. Distinct time course of the decrease in hepatic AMP-activated protein kinase and Akt phosphorylation in mice fed a high fat diet. PLoS ONE 10: e0135554.PubMedPubMedCentral
61.
Zurück zum Zitat Guo, H., J.B. Callaway, and J.P. Ting. 2015. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nature medicine 21: 677–687.PubMedPubMedCentral Guo, H., J.B. Callaway, and J.P. Ting. 2015. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nature medicine 21: 677–687.PubMedPubMedCentral
62.
Zurück zum Zitat Gong, Y., X. Jiang, S. Yang, Y. Huang, J. Hong, Y. Ma, X. Fang, Y. Fang, and J. Wu. 2022. The biological activity of 3-O-acetyl-11-keto-β-boswellic acid in nervous system diseases. NeuroMolecular Medicine 1–11. Gong, Y., X. Jiang, S. Yang, Y. Huang, J. Hong, Y. Ma, X. Fang, Y. Fang, and J. Wu. 2022. The biological activity of 3-O-acetyl-11-keto-β-boswellic acid in nervous system diseases. NeuroMolecular Medicine 1–11.
63.
Zurück zum Zitat Majeed, M., K. Nagabhushanam, L. Lawrence, R. Nallathambi, V. Thiyagarajan, and L. Mundkur. 2021. Boswellia serrata extract containing 30% 3-acetyl-11-keto-boswellic acid attenuates inflammatory mediators and preserves extracellular matrix in collagen-induced arthritis. Frontiers in Physiology 1578. Majeed, M., K. Nagabhushanam, L. Lawrence, R. Nallathambi, V. Thiyagarajan, and L. Mundkur. 2021. Boswellia serrata extract containing 30% 3-acetyl-11-keto-boswellic acid attenuates inflammatory mediators and preserves extracellular matrix in collagen-induced arthritis. Frontiers in Physiology 1578.
64.
Zurück zum Zitat Suther, C., L. Devon, L. Daddi, A. Matson, H. Panier, H. Yuan, K. Saar, S. Bokoliya, Y. Dorsett, and D.A. Sela. 2022. Dietary Indian frankincense (Boswellia serrata) ameliorates murine allergic asthma through modulation of the gut microbiome. Journal of Functional Foods 97: 105249. Suther, C., L. Devon, L. Daddi, A. Matson, H. Panier, H. Yuan, K. Saar, S. Bokoliya, Y. Dorsett, and D.A. Sela. 2022. Dietary Indian frankincense (Boswellia serrata) ameliorates murine allergic asthma through modulation of the gut microbiome. Journal of Functional Foods 97: 105249.
Metadaten
Titel
Acetyl-11-Keto-Beta-Boswellic Acid Has Therapeutic Benefits for NAFLD Rat Models That Were Given a High Fructose Diet by Ameliorating Hepatic Inflammation and Lipid Metabolism
verfasst von
Reza Ataei Kachouei
Alireza Doagoo
Maral Jalilzadeh
Seyyed Hossein Khatami
Shima Rajaei
Ali Jahanbazi Jahan-Abad
Farzaneh Salmani
Roya Pakrad
Somayeh Mahmoodi Baram
Mitra Nourbakhsh
Mohammad-Amin Abdollahifar
Hojjat Allah Abbaszadeh
Shokoofeh Noori
Mitra Rezaei
Meisam Mahdavi
Mohammad Reza Shahmohammadi
Saeed Karima
Publikationsdatum
13.06.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01853-y

Weitere Artikel der Ausgabe 5/2023

Inflammation 5/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.