Skip to main content
Erschienen in: Inflammation 2/2023

23.11.2022 | Original Article

ALCAM Deficiency Alleviates LPS-Induced Acute Lung Injury by Inhibiting Inflammatory Response

verfasst von: Ruirui Li, Tao Ren, Jianqiong Zeng, Hang Xu

Erschienen in: Inflammation | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Abstract

We investigated the effects and underlying mechanisms of activated leukocyte adhesion molecule (ALCAM) on acute lung injury (ALI) by using lipopolysaccharide (LPS)-induced ALI animal model and LPS-induced inflammation in vitro. In LPS-stimulated mice, ALCAM deficiency relieved lung injury, which manifested as reduced pathological changes in the lung tissue, reduced pulmonary edema, and reduced vascular permeability. Furthermore, we demonstrated that ALCAM deficiency reduced the infiltration of inflammatory cells, including neutrophil, eosinophil, and macrophages; the release of inflammatory cytokines, including IL-1β, IL-6, TNF-α, and COX2; and reduced the protein level of TLR4/NF-κB pathway (TLR4, MyD88, p-IkBɑ, and p-NF-κB p65). We also demonstrated that ALCAM deficiency reduced the expression of oxidative stress-related proteins (Nrf-2, HO-1, and NQO-1) and endoplasmic reticulum stress-related proteins (CHOP, GRP78, ATF-6, and p-eIF2ɑ). In addition, in LPS-induced inflammation in vitro, ALCAM overexpression promoted inflammatory response, oxidative stress, and ER stress. We established that ALCAM deficiency can suppress the ALI process by reducing inflammatory response, oxidative stress, and endoplasmic reticulum stress.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hayes, M., G. Curley, B. Ansari, and J.G. Laffey. 2012. Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome — hope or hype? Critical care (London, England) 16 (2): 205.CrossRefPubMed Hayes, M., G. Curley, B. Ansari, and J.G. Laffey. 2012. Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome — hope or hype? Critical care (London, England) 16 (2): 205.CrossRefPubMed
2.
Zurück zum Zitat Ye, R., and Z. Liu. 2020. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Experimental and molecular pathology 113: 104350.CrossRefPubMed Ye, R., and Z. Liu. 2020. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Experimental and molecular pathology 113: 104350.CrossRefPubMed
3.
Zurück zum Zitat Jiang, W., F. Luo, Q. Lu, J. Liu, P. Li, X. Wang, Y. Fu, K. Hao, T. Yan, and X. Ding. 2016. The protective effect of Trillin LPS-induced acute lung injury by the regulations of inflammation and oxidative state. Chemico-biological interactions 243: 127–134.CrossRefPubMed Jiang, W., F. Luo, Q. Lu, J. Liu, P. Li, X. Wang, Y. Fu, K. Hao, T. Yan, and X. Ding. 2016. The protective effect of Trillin LPS-induced acute lung injury by the regulations of inflammation and oxidative state. Chemico-biological interactions 243: 127–134.CrossRefPubMed
4.
Zurück zum Zitat Li, L., Y.G. Zhang, Y.F. Tan, J.J. Zhao, H.R. Zhang, and B. Zhao. 2018. Tanshinone II is a potent candidate for treatment of lipopolysaccharide-induced acute lung injury in rat model. Oncology letters 15 (2): 2550–2554.PubMed Li, L., Y.G. Zhang, Y.F. Tan, J.J. Zhao, H.R. Zhang, and B. Zhao. 2018. Tanshinone II is a potent candidate for treatment of lipopolysaccharide-induced acute lung injury in rat model. Oncology letters 15 (2): 2550–2554.PubMed
5.
Zurück zum Zitat Xiang B, Chen L, Wang X, Zhao Y, Wang Y, and Xiang C. 2017. Transplantation of menstrual blood-derived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury. International journal of molecular sciences 18 (4). Xiang B, Chen L, Wang X, Zhao Y, Wang Y, and Xiang C. 2017. Transplantation of menstrual blood-derived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury. International journal of molecular sciences 18 (4).
6.
Zurück zum Zitat Jeong YJ, Oh HK, Park SH, and Bong JG. 2018. Prognostic significance of activated leukocyte cell adhesion molecule (ALCAM) in association with promoter methylation of the ALCAM gene in breast cancer. Molecules (Basel, Switzerland) 23 (1). Jeong YJ, Oh HK, Park SH, and Bong JG. 2018. Prognostic significance of activated leukocyte cell adhesion molecule (ALCAM) in association with promoter methylation of the ALCAM gene in breast cancer. Molecules (Basel, Switzerland) 23 (1).
7.
Zurück zum Zitat Bowen, M.A., D.D. Patel, X. Li, B. Modrell, A.R. Malacko, W.C. Wang, H. Marquardt, M. Neubauer, J.M. Pesando, U. Francke, et al. 1995. Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. The Journal of experimental medicine 181 (6): 2213–2220.CrossRefPubMed Bowen, M.A., D.D. Patel, X. Li, B. Modrell, A.R. Malacko, W.C. Wang, H. Marquardt, M. Neubauer, J.M. Pesando, U. Francke, et al. 1995. Cloning, mapping, and characterization of activated leukocyte-cell adhesion molecule (ALCAM), a CD6 ligand. The Journal of experimental medicine 181 (6): 2213–2220.CrossRefPubMed
8.
Zurück zum Zitat van Kempen, L.C., J.M. Nelissen, W.G. Degen, R. Torensma, U.H. Weidle, H.P. Bloemers, C.G. Figdor, and G.W. Swart. 2001. Molecular basis for the homophilic activated leukocyte cell adhesion molecule (ALCAM)-ALCAM interaction. The Journal of biological chemistry 276 (28): 25783–25790.CrossRefPubMed van Kempen, L.C., J.M. Nelissen, W.G. Degen, R. Torensma, U.H. Weidle, H.P. Bloemers, C.G. Figdor, and G.W. Swart. 2001. Molecular basis for the homophilic activated leukocyte cell adhesion molecule (ALCAM)-ALCAM interaction. The Journal of biological chemistry 276 (28): 25783–25790.CrossRefPubMed
9.
Zurück zum Zitat Ohneda, O., K. Ohneda, F. Arai, J. Lee, T. Miyamoto, Y. Fukushima, D. Dowbenko, L.A. Lasky, and T. Suda. 2001. ALCAM (CD166): Its role in hematopoietic and endothelial development. Blood 98 (7): 2134–2142.CrossRefPubMed Ohneda, O., K. Ohneda, F. Arai, J. Lee, T. Miyamoto, Y. Fukushima, D. Dowbenko, L.A. Lasky, and T. Suda. 2001. ALCAM (CD166): Its role in hematopoietic and endothelial development. Blood 98 (7): 2134–2142.CrossRefPubMed
10.
Zurück zum Zitat Burandt, E., T. Bari Noubar, A. Lebeau, S. Minner, C. Burdelski, F. Jänicke, V. Müller, L. Terracciano, R. Simon, G. Sauter, W. Wilczak, and P. Lebok. 2014. Loss of ALCAM expression is linked to adverse phenotype and poor prognosis in breast cancer: A TMA-based immunohistochemical study on 2,197 breast cancer patients. Oncology reports 32 (6): 2628–2634.CrossRefPubMed Burandt, E., T. Bari Noubar, A. Lebeau, S. Minner, C. Burdelski, F. Jänicke, V. Müller, L. Terracciano, R. Simon, G. Sauter, W. Wilczak, and P. Lebok. 2014. Loss of ALCAM expression is linked to adverse phenotype and poor prognosis in breast cancer: A TMA-based immunohistochemical study on 2,197 breast cancer patients. Oncology reports 32 (6): 2628–2634.CrossRefPubMed
11.
Zurück zum Zitat Sanders, A.J., S. Owen, L.D. Morgan, F. Ruge, R.J. Collins, L. Ye, M.D. Mason, and W.G. Jiang. 2019. Importance of activated leukocyte cell adhesion molecule (ALCAM) in prostate cancer progression and metastatic dissemination. Oncotarget 10 (59): 6362–6377.CrossRefPubMedPubMedCentral Sanders, A.J., S. Owen, L.D. Morgan, F. Ruge, R.J. Collins, L. Ye, M.D. Mason, and W.G. Jiang. 2019. Importance of activated leukocyte cell adhesion molecule (ALCAM) in prostate cancer progression and metastatic dissemination. Oncotarget 10 (59): 6362–6377.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Mezzanzanica, D., M. Fabbi, M. Bagnoli, S. Staurengo, M. Losa, E. Balladore, P. Alberti, L. Lusa, A. Ditto, S. Ferrini, M.A. Pierotti, M. Barbareschi, S. Pilotti, and S. Canevari. 2008. Subcellular localization of activated leukocyte cell adhesion molecule is a molecular predictor of survival in ovarian carcinoma patients. Clinical cancer research : An official journal of the American Association for Cancer Research 14 (6): 1726–1733.CrossRefPubMed Mezzanzanica, D., M. Fabbi, M. Bagnoli, S. Staurengo, M. Losa, E. Balladore, P. Alberti, L. Lusa, A. Ditto, S. Ferrini, M.A. Pierotti, M. Barbareschi, S. Pilotti, and S. Canevari. 2008. Subcellular localization of activated leukocyte cell adhesion molecule is a molecular predictor of survival in ovarian carcinoma patients. Clinical cancer research : An official journal of the American Association for Cancer Research 14 (6): 1726–1733.CrossRefPubMed
13.
Zurück zum Zitat Smedbakken, L., J.K. Jensen, J. Hallén, D. Atar, J.L. Januzzi, B. Halvorsen, P. Aukrust, and T. Ueland. 2011. Activated leukocyte cell adhesion molecule and prognosis in acute ischemic stroke. Stroke 42 (9): 2453–2458.CrossRefPubMed Smedbakken, L., J.K. Jensen, J. Hallén, D. Atar, J.L. Januzzi, B. Halvorsen, P. Aukrust, and T. Ueland. 2011. Activated leukocyte cell adhesion molecule and prognosis in acute ischemic stroke. Stroke 42 (9): 2453–2458.CrossRefPubMed
14.
Zurück zum Zitat King, J., S. Ofori-Acquah, T. Stevens, and A.B. Al-Mehdi. 2004. Potential role for activated leukocyte cell adhesion molecule and neural cadherin in metastasis to the lung microcirculation. Chest 125 (5 Suppl): 150s–151s.CrossRefPubMed King, J., S. Ofori-Acquah, T. Stevens, and A.B. Al-Mehdi. 2004. Potential role for activated leukocyte cell adhesion molecule and neural cadherin in metastasis to the lung microcirculation. Chest 125 (5 Suppl): 150s–151s.CrossRefPubMed
15.
Zurück zum Zitat Allen JR, Ge L, Huang Y, Brauer R, and Chen P. 2018. TIMP-1 promotes the immune response in influenza-induced acute lung injury. Lung 196 (Suppl 3). Allen JR, Ge L, Huang Y, Brauer R, and Chen P. 2018. TIMP-1 promotes the immune response in influenza-induced acute lung injury. Lung 196 (Suppl 3).
16.
Zurück zum Zitat Li, Y., J. Huang, N.M. Foley, Y. Xu, Y.P. Li, J. Pan, H.P. Redmond, J.H. Wang, and J. Wang. 2016. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration. Scientific reports 6: 31284.CrossRefPubMedPubMedCentral Li, Y., J. Huang, N.M. Foley, Y. Xu, Y.P. Li, J. Pan, H.P. Redmond, J.H. Wang, and J. Wang. 2016. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration. Scientific reports 6: 31284.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Giunta, M., A. Favre, D. Ramarli, C. Grossi, and G. Corte. 1991. A novel integrin involved in thymocyte-thymic epithelial cell interactions. The Journal of experimental medicine 173 (6): 1537–1548.CrossRefPubMed Giunta, M., A. Favre, D. Ramarli, C. Grossi, and G. Corte. 1991. A novel integrin involved in thymocyte-thymic epithelial cell interactions. The Journal of experimental medicine 173 (6): 1537–1548.CrossRefPubMed
18.
Zurück zum Zitat Ikeda, K., and T. Quertermous. 2004. Molecular isolation and characterization of a soluble isoform of activated leukocyte cell adhesion molecule that modulates endothelial cell function. Journal of Biological Chemistry 279 (53): 55315.CrossRefPubMed Ikeda, K., and T. Quertermous. 2004. Molecular isolation and characterization of a soluble isoform of activated leukocyte cell adhesion molecule that modulates endothelial cell function. Journal of Biological Chemistry 279 (53): 55315.CrossRefPubMed
19.
Zurück zum Zitat Zimmerman, A.W., B. Joosten, R. Torensma, J.R. Parnes, F.V. Leeuwen, and C.G. Figdor. 2006. Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells. Blood 107 (8): 3212–3220.CrossRefPubMed Zimmerman, A.W., B. Joosten, R. Torensma, J.R. Parnes, F.V. Leeuwen, and C.G. Figdor. 2006. Long-term engagement of CD6 and ALCAM is essential for T-cell proliferation induced by dendritic cells. Blood 107 (8): 3212–3220.CrossRefPubMed
20.
Zurück zum Zitat Iolyeva M, Karaman S, Willrodt AH, Weingartner S, Vigl B, and Halin C. 2013. Novel role for ALCAM in lymphatic network formation and function. The FASEB Journal 27. Iolyeva M, Karaman S, Willrodt AH, Weingartner S, Vigl B, and Halin C. 2013. Novel role for ALCAM in lymphatic network formation and function. The FASEB Journal 27.
21.
Zurück zum Zitat F. Santos R, Oliveira L, and M. Carmo A. 2016. Tuning T cell activation: the function of CD6 at the immunological synapse and in T cell responses. Current Drug Targets 17 (6). F. Santos R, Oliveira L, and M. Carmo A. 2016. Tuning T cell activation: the function of CD6 at the immunological synapse and in T cell responses. Current Drug Targets 17 (6).
22.
Zurück zum Zitat Bauer, R.V., D. Oikonomou, A. Sulaj, S. Mohammed, A. Hotz-Wagenblatt, H.J. Grone, B. Arnold, C. Falk, D. Luethje, and A. Erhardt. 2013. CD166/ALCAM mediates proinflammatory effects of S100B in delayed type hypersensitivity. Journal of Immunology 191 (1): 369–377.CrossRef Bauer, R.V., D. Oikonomou, A. Sulaj, S. Mohammed, A. Hotz-Wagenblatt, H.J. Grone, B. Arnold, C. Falk, D. Luethje, and A. Erhardt. 2013. CD166/ALCAM mediates proinflammatory effects of S100B in delayed type hypersensitivity. Journal of Immunology 191 (1): 369–377.CrossRef
23.
Zurück zum Zitat Mi, N.K., J.Y. Hong, D.H. Shim, I.S. Sol, and M.H. Sohn. 2018. Activated leukocyte cell adhesion molecule stimulates the T cell response in allergic asthma. American journal of respiratory and critical care medicine 197 (8): 994.CrossRef Mi, N.K., J.Y. Hong, D.H. Shim, I.S. Sol, and M.H. Sohn. 2018. Activated leukocyte cell adhesion molecule stimulates the T cell response in allergic asthma. American journal of respiratory and critical care medicine 197 (8): 994.CrossRef
24.
Zurück zum Zitat Fouad, A.A., W.H. Albuali, and I. Jresat. 2016. Protective effect of naringenin against lipopolysaccharide-induced acute lung injury in rats. Pharmacology 97 (5–6): 224–232.CrossRefPubMed Fouad, A.A., W.H. Albuali, and I. Jresat. 2016. Protective effect of naringenin against lipopolysaccharide-induced acute lung injury in rats. Pharmacology 97 (5–6): 224–232.CrossRefPubMed
25.
Zurück zum Zitat Zhang, Z., Z. Luo, A. Bi, W. Yang, W. An, X. Dong, R. Chen, S. Yang, H. Tang, X. Han, and L. Luo. 2017. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice. European journal of pharmacology 811: 1–11.CrossRefPubMed Zhang, Z., Z. Luo, A. Bi, W. Yang, W. An, X. Dong, R. Chen, S. Yang, H. Tang, X. Han, and L. Luo. 2017. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice. European journal of pharmacology 811: 1–11.CrossRefPubMed
26.
Zurück zum Zitat Li X, Jamal M, Guo P, Jin Z, Zheng F, Song X, Zhan J, and Wu H. 2019. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 118: 109363. Li X, Jamal M, Guo P, Jin Z, Zheng F, Song X, Zhan J, and Wu H. 2019. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 118: 109363.
27.
Zurück zum Zitat Du, Z.A., M.N. Sun, and Z.S. Hu. 2018. Saikosaponin A ameliorates LPS-induced acute lung injury in mice. Inflammation 41 (1): 193–198.CrossRefPubMed Du, Z.A., M.N. Sun, and Z.S. Hu. 2018. Saikosaponin A ameliorates LPS-induced acute lung injury in mice. Inflammation 41 (1): 193–198.CrossRefPubMed
28.
Zurück zum Zitat Reutershan, J., I. Vollmer, S. Stark, R. Wagner, K.C. Ngamsri, and H.K. Eltzschig. 2009. Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB journal : Official publication of the Federation of American Societies for Experimental Biology 23 (2): 473–482.CrossRefPubMed Reutershan, J., I. Vollmer, S. Stark, R. Wagner, K.C. Ngamsri, and H.K. Eltzschig. 2009. Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB journal : Official publication of the Federation of American Societies for Experimental Biology 23 (2): 473–482.CrossRefPubMed
29.
Zurück zum Zitat Nie Y, Wang Z, Chai G, Xiong Y, Li B, Zhang H, Xin R, Qian X, Tang Z, Wu J, and Zhao P. 2019. Dehydrocostus lactone suppresses LPS-induced acute lung injury and macrophage activation through NF-κB signaling pathway mediated by p38 MAPK and Akt. Molecules (Basel, Switzerland) 24 (8). Nie Y, Wang Z, Chai G, Xiong Y, Li B, Zhang H, Xin R, Qian X, Tang Z, Wu J, and Zhao P. 2019. Dehydrocostus lactone suppresses LPS-induced acute lung injury and macrophage activation through NF-κB signaling pathway mediated by p38 MAPK and Akt. Molecules (Basel, Switzerland) 24 (8).
30.
Zurück zum Zitat Lv, H., Q. Liu, Z. Wen, H. Feng, X. Deng, and X. Ci. 2017. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox biology 12: 311–324.CrossRefPubMedPubMedCentral Lv, H., Q. Liu, Z. Wen, H. Feng, X. Deng, and X. Ci. 2017. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox biology 12: 311–324.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Wang, B., X. Gong, J.Y. Wan, L. Zhang, Z. Zhang, H.Z. Li, and S. Min. 2011. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulmonary pharmacology & therapeutics 24 (4): 434–441.CrossRef Wang, B., X. Gong, J.Y. Wan, L. Zhang, Z. Zhang, H.Z. Li, and S. Min. 2011. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulmonary pharmacology & therapeutics 24 (4): 434–441.CrossRef
32.
Zurück zum Zitat Jiang, K., T. Zhang, N. Yin, X. Ma, G. Zhao, H. Wu, C. Qiu, and G. Deng. 2017. Geraniol alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis. Oncotarget 8 (41): 71038–71053.CrossRefPubMedPubMedCentral Jiang, K., T. Zhang, N. Yin, X. Ma, G. Zhao, H. Wu, C. Qiu, and G. Deng. 2017. Geraniol alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis. Oncotarget 8 (41): 71038–71053.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Chi, G., M. Wei, X. Xie, L.W. Soromou, F. Liu, and S. Zhao. 2013. Suppression of MAPK and NF-κB pathways by limonene contributes to attenuation of lipopolysaccharide-induced inflammatory responses in acute lung injury. Inflammation 36 (2): 501–511.CrossRefPubMed Chi, G., M. Wei, X. Xie, L.W. Soromou, F. Liu, and S. Zhao. 2013. Suppression of MAPK and NF-κB pathways by limonene contributes to attenuation of lipopolysaccharide-induced inflammatory responses in acute lung injury. Inflammation 36 (2): 501–511.CrossRefPubMed
34.
Zurück zum Zitat Tasaka, S., F. Amaya, S. Hashimoto, and A. Ishizaka. 2008. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxidants & redox signaling 10 (4): 739–753.CrossRef Tasaka, S., F. Amaya, S. Hashimoto, and A. Ishizaka. 2008. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxidants & redox signaling 10 (4): 739–753.CrossRef
35.
Zurück zum Zitat Huppert, L.A., M.A. Matthay, and L.B. Ware. 2019. Pathogenesis of acute respiratory distress syndrome. Seminars in respiratory and critical care medicine 40 (1): 31–39.CrossRefPubMedPubMedCentral Huppert, L.A., M.A. Matthay, and L.B. Ware. 2019. Pathogenesis of acute respiratory distress syndrome. Seminars in respiratory and critical care medicine 40 (1): 31–39.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Ryter, S.W., P.K. Hong, A. Hoetzel, J.W. Park, and A. Choi. 2007. Mechanisms of cell death in oxidative stress. Antioxidants & redox signaling 9 (1): 49–89.CrossRef Ryter, S.W., P.K. Hong, A. Hoetzel, J.W. Park, and A. Choi. 2007. Mechanisms of cell death in oxidative stress. Antioxidants & redox signaling 9 (1): 49–89.CrossRef
37.
Zurück zum Zitat Jean-Luc, B. 2013. Reducing damage through Nrf-2. Cardiovascular research 1: 1–3. Jean-Luc, B. 2013. Reducing damage through Nrf-2. Cardiovascular research 1: 1–3.
38.
Zurück zum Zitat Tkachev, V.O., E.B. Menshchikova, and N.K. Zenkov. 2011. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry Biokhimiia 76 (4): 407–422.CrossRefPubMed Tkachev, V.O., E.B. Menshchikova, and N.K. Zenkov. 2011. Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry Biokhimiia 76 (4): 407–422.CrossRefPubMed
39.
Zurück zum Zitat Zhang, H., W. Zhang, F. Jiao, X. Li, H. Zhang, L. Wang, and Z. Gong. 2018. The nephroprotective effect of MS-275 on lipopolysaccharide (LPS)-induced acute kidney injury by inhibiting reactive oxygen species (ROS)-oxidative stress and endoplasmic reticulum stress. Medical science monitor : International medical journal of experimental and clinical research 24: 2620–2630.CrossRefPubMed Zhang, H., W. Zhang, F. Jiao, X. Li, H. Zhang, L. Wang, and Z. Gong. 2018. The nephroprotective effect of MS-275 on lipopolysaccharide (LPS)-induced acute kidney injury by inhibiting reactive oxygen species (ROS)-oxidative stress and endoplasmic reticulum stress. Medical science monitor : International medical journal of experimental and clinical research 24: 2620–2630.CrossRefPubMed
40.
Zurück zum Zitat Petrovski, G., S. Das, B. Juhasz, A. Kertesz, A. Tosaki, and D.K. Das. 2011. Cardioprotection by endoplasmic reticulum stress-induced autophagy. Antioxidants & redox signaling 14 (11): 2191–2200.CrossRef Petrovski, G., S. Das, B. Juhasz, A. Kertesz, A. Tosaki, and D.K. Das. 2011. Cardioprotection by endoplasmic reticulum stress-induced autophagy. Antioxidants & redox signaling 14 (11): 2191–2200.CrossRef
41.
Zurück zum Zitat Yang H, Song Z, and Hong D. 2020. CRBN knockdown mitigates lipopolysaccharide-induced acute lung injury by suppression of oxidative stress and endoplasmic reticulum (ER) stress associated NF-κB signaling. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 123: 109761 Yang H, Song Z, and Hong D. 2020. CRBN knockdown mitigates lipopolysaccharide-induced acute lung injury by suppression of oxidative stress and endoplasmic reticulum (ER) stress associated NF-κB signaling. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 123: 109761
42.
Zurück zum Zitat Schappe, M.S., K. Szteyn, M.E. Stremska, S.K. Mendu, T.K. Downs, P.V. Seegren, M.A. Mahoney, S. Dixit, J.K. Krupa, E.J. Stipes, J.S. Rogers, S.E. Adamson, N. Leitinger, and B.N. Desai. 2018. Chanzyme TRPM7 mediates the Ca(2+) influx essential for lipopolysaccharide-induced toll-like receptor 4 endocytosis and macrophage activation. Immunity 48 (1): 59-74.e55.CrossRefPubMedPubMedCentral Schappe, M.S., K. Szteyn, M.E. Stremska, S.K. Mendu, T.K. Downs, P.V. Seegren, M.A. Mahoney, S. Dixit, J.K. Krupa, E.J. Stipes, J.S. Rogers, S.E. Adamson, N. Leitinger, and B.N. Desai. 2018. Chanzyme TRPM7 mediates the Ca(2+) influx essential for lipopolysaccharide-induced toll-like receptor 4 endocytosis and macrophage activation. Immunity 48 (1): 59-74.e55.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-κB signaling and Nrf2 pathway in high fat diet fed mice [Retraction]. 2019. International journal of nanomedicine 14: 2961–2962. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-κB signaling and Nrf2 pathway in high fat diet fed mice [Retraction]. 2019. International journal of nanomedicine 14: 2961–2962.
44.
Zurück zum Zitat Yang Z, Deng Y, Su D, Tian J, Gao Y, He Z, and Wang X. 2013. TLR4 as receptor for HMGB1-mediated acute lung injury after liver ischemia/reperfusion injury. Laboratory investigation; a journal of technical methods and pathology 93 (7): 792–800 Yang Z, Deng Y, Su D, Tian J, Gao Y, He Z, and Wang X. 2013. TLR4 as receptor for HMGB1-mediated acute lung injury after liver ischemia/reperfusion injury. Laboratory investigation; a journal of technical methods and pathology 93 (7): 792–800
45.
Zurück zum Zitat Castoldi, A., T.T. Braga, M. Correa-Costa, C.F. Aguiar, Ê.J. Bassi, R. Correa-Silva, R.M. Elias, F. Salvador, P.M. Moraes-Vieira, M.A. Cenedeze, M.A. Reis, M.I. Hiyane, Á. Pacheco-Silva, G.M. Gonçalves, and N.O. Saraiva Câmara. 2012. TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis. PLoS ONE 7 (5): e37584.CrossRefPubMedPubMedCentral Castoldi, A., T.T. Braga, M. Correa-Costa, C.F. Aguiar, Ê.J. Bassi, R. Correa-Silva, R.M. Elias, F. Salvador, P.M. Moraes-Vieira, M.A. Cenedeze, M.A. Reis, M.I. Hiyane, Á. Pacheco-Silva, G.M. Gonçalves, and N.O. Saraiva Câmara. 2012. TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis. PLoS ONE 7 (5): e37584.CrossRefPubMedPubMedCentral
Metadaten
Titel
ALCAM Deficiency Alleviates LPS-Induced Acute Lung Injury by Inhibiting Inflammatory Response
verfasst von
Ruirui Li
Tao Ren
Jianqiong Zeng
Hang Xu
Publikationsdatum
23.11.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01765-3

Weitere Artikel der Ausgabe 2/2023

Inflammation 2/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.