Skip to main content
Erschienen in: Inflammation 3/2023

14.01.2023 | ORIGINAL ARTICLE

Collagen Triple Helix Repeat Containing 1 Deficiency Protects Against Airway Remodeling and Inflammation in Asthma Models In Vivo and In Vitro

verfasst von: Yong Feng, Jiapeng Hu, Fen Liu, Yunxiao Shang

Erschienen in: Inflammation | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Asthma is a chronic inflammatory disease characterized by airway remodeling and lung inflammation. Collagen triple helix repeat containing 1 (CTHRC1), a glycoprotein, is involved in multiple pathological processes, including inflammation and fibrosis. However, the function of CTHRC1 in asthma remains unclear. In the present study, the mouse asthma model was successfully generated by sensitizing and challenging mice with ovalbumin (OVA). CTHRC1 expression at both RNA and protein levels was significantly upregulated in lung tissues of asthmatic mice. Asthmatic mice exhibited significant airway remodeling as evidenced by increased bronchial wall and smooth muscle cell layer thickness, goblet cell hyperplasia and collagen deposition, and epithelial-mesenchymal transition (EMT), but those characteristics were reversed by CTHRC1 silencing. The cell model with transforming growth factor-β1 (TGF-β1) induction in bronchial epithelial cells (BEAS-2B) was conducted to verify the effects of CTHRC1 on EMT, a classic mechanism that mediates airway remodeling. The results showed that TGF-β1 stimulation increased CTHRC1 expression, and CTHRC1 knockdown inhibited TGF-β1-induced EMT. OVA-treated mice also showed increased inflammatory cell infiltration and the production of OVA-specific immunoglobulin E (IgE), interleukin (IL)-4, IL-5, and IL-13, which were decreased by CTHRC1 downregulation. The effects of CTHRC1 on OVA-induced airway inflammation were further determined by treating BEAS-2B cells with IL-13, in which CTHRC1 knockdown reduced the IL-13-induced secretion of pro-inflammatory factors, including IL-4 and IL-5. In conclusion, these results indicate that CTHRC1 silencing attenuates asthmatic airway remodeling and inflammation in vivo and in vitro, suggesting that CTHRC1 may be a potential target for asthma treatment.

Graphical Abstract

Literatur
1.
Zurück zum Zitat Papi, A., C. Brightling, S.E. Pedersen, and H.K. Reddel. 2018. Asthma. Lancet (London, England) 391: 783–800.PubMedCrossRef Papi, A., C. Brightling, S.E. Pedersen, and H.K. Reddel. 2018. Asthma. Lancet (London, England) 391: 783–800.PubMedCrossRef
2.
Zurück zum Zitat Holgate, S.T., S. Wenzel, D.S. Postma, S.T. Weiss, H. Renz, and P.D. Sly. 2015. Asthma. Nature Reviews Disease Primers 1: 15025.PubMedCrossRef Holgate, S.T., S. Wenzel, D.S. Postma, S.T. Weiss, H. Renz, and P.D. Sly. 2015. Asthma. Nature Reviews Disease Primers 1: 15025.PubMedCrossRef
3.
Zurück zum Zitat Wang, K.C.W., G.M. Donovan, A.L. James, and P.B. Noble. 2020. Asthma: Pharmacological degradation of the airway smooth muscle layer. The International Journal of Biochemistry & Cell Biology 126: 105818.CrossRef Wang, K.C.W., G.M. Donovan, A.L. James, and P.B. Noble. 2020. Asthma: Pharmacological degradation of the airway smooth muscle layer. The International Journal of Biochemistry & Cell Biology 126: 105818.CrossRef
4.
5.
Zurück zum Zitat Morimoto, Y., K. Hirahara, M. Kiuchi, T. Wada, T. Ichikawa, T. Kanno, M. Okano, K. Kokubo, A. Onodera, D. Sakurai, Y. Okamoto, and T. Nakayama. 2018. Amphiregulin-producing pathogenic memory T helper 2 cells instruct eosinophils to secrete osteopontin and facilitate airway fibrosis. Immunity 49: 134-150.e6.PubMedCrossRef Morimoto, Y., K. Hirahara, M. Kiuchi, T. Wada, T. Ichikawa, T. Kanno, M. Okano, K. Kokubo, A. Onodera, D. Sakurai, Y. Okamoto, and T. Nakayama. 2018. Amphiregulin-producing pathogenic memory T helper 2 cells instruct eosinophils to secrete osteopontin and facilitate airway fibrosis. Immunity 49: 134-150.e6.PubMedCrossRef
6.
Zurück zum Zitat Hough, K.P., M.L. Curtiss, T.J. Blain, R.-M. Liu, J. Trevor, J.S. Deshane, and V.J. Thannickal. 2020. Airway remodeling in asthma. Frontiers In Medicine 7: 191.PubMedPubMedCentralCrossRef Hough, K.P., M.L. Curtiss, T.J. Blain, R.-M. Liu, J. Trevor, J.S. Deshane, and V.J. Thannickal. 2020. Airway remodeling in asthma. Frontiers In Medicine 7: 191.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Lambrecht, B.N., and H. Hammad. 2015. The immunology of asthma. Nature immunology 16: 45–56.PubMedCrossRef Lambrecht, B.N., and H. Hammad. 2015. The immunology of asthma. Nature immunology 16: 45–56.PubMedCrossRef
8.
Zurück zum Zitat Sun, Z., N. Ji, Q. Ma, R. Zhu, Z. Chen, Z. Wang, Y. Qian, C. Wu, F. Hu, M. Huang, and M. Zhang. 2020. Epithelial-mesenchymal transition in asthma airway remodeling is regulated by the IL-33/CD146 axis. Frontiers In Immunology 11: 1598.PubMedPubMedCentralCrossRef Sun, Z., N. Ji, Q. Ma, R. Zhu, Z. Chen, Z. Wang, Y. Qian, C. Wu, F. Hu, M. Huang, and M. Zhang. 2020. Epithelial-mesenchymal transition in asthma airway remodeling is regulated by the IL-33/CD146 axis. Frontiers In Immunology 11: 1598.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Riemma, M.A., I. Cerqua, B. Romano, E. Irollo, A. Bertolino, R. Camerlingo, E. Granato, G. Rea, S. Scala, M. Terlizzi, G. Spaziano, R. Sorrentino, B. D’Agostino, F. Roviezzo, and G. Cirino. 2022. Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease. British Journal of Pharmacology 179: 1753–1768.PubMedCrossRef Riemma, M.A., I. Cerqua, B. Romano, E. Irollo, A. Bertolino, R. Camerlingo, E. Granato, G. Rea, S. Scala, M. Terlizzi, G. Spaziano, R. Sorrentino, B. D’Agostino, F. Roviezzo, and G. Cirino. 2022. Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease. British Journal of Pharmacology 179: 1753–1768.PubMedCrossRef
10.
Zurück zum Zitat Guo, Y., C. Jiang, S. Yao, L. Ma, H. Zhang, X. Wang, S. Xu, and Z. Cao. 2021. CTHRC1 knockdown promotes inflammatory responses partially by p38 MAPK activation in human periodontal ligament cells. Inflammation 44: 1831–1842.PubMedCrossRef Guo, Y., C. Jiang, S. Yao, L. Ma, H. Zhang, X. Wang, S. Xu, and Z. Cao. 2021. CTHRC1 knockdown promotes inflammatory responses partially by p38 MAPK activation in human periodontal ligament cells. Inflammation 44: 1831–1842.PubMedCrossRef
11.
Zurück zum Zitat Tsukui, T., K.H. Sun, J.B. Wetter, J.R. Wilson-Kanamori, L.A. Hazelwood, and N.C. Henderson. 2020. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications 11: 1920.PubMedPubMedCentralCrossRef Tsukui, T., K.H. Sun, J.B. Wetter, J.R. Wilson-Kanamori, L.A. Hazelwood, and N.C. Henderson. 2020. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications 11: 1920.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Jin, X.-F., H. Li, S. Zong, and H.-Y. Li. 2016. Knockdown of collagen triple helix repeat containing-1 inhibits the proliferation and epithelial-to-mesenchymal transition in renal cell carcinoma cells. Oncology Research 24: 477–485.PubMedPubMedCentralCrossRef Jin, X.-F., H. Li, S. Zong, and H.-Y. Li. 2016. Knockdown of collagen triple helix repeat containing-1 inhibits the proliferation and epithelial-to-mesenchymal transition in renal cell carcinoma cells. Oncology Research 24: 477–485.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Wang, C., Z. Li, F. Shao, X. Yang, X. Feng, S. Shi, Y. Gao, and J. He. 2017. High expression of collagen triple helix repeat containing 1 (CTHRC1) facilitates progression of oesophageal squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation. Journal of Experimental Clinical Cancer Research 36: 84.PubMedPubMedCentralCrossRef Wang, C., Z. Li, F. Shao, X. Yang, X. Feng, S. Shi, Y. Gao, and J. He. 2017. High expression of collagen triple helix repeat containing 1 (CTHRC1) facilitates progression of oesophageal squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation. Journal of Experimental Clinical Cancer Research 36: 84.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Jiang, N., Y. Cui, J. Liu, X. Zhu, H. Wu, Z. Yang, and Z. Ke. 2016. Multidimensional roles of collagen triple helix repeat containing 1 (CTHRC1) in malignant cancers. Journal of Cancer 7: 2213–2220.PubMedPubMedCentralCrossRef Jiang, N., Y. Cui, J. Liu, X. Zhu, H. Wu, Z. Yang, and Z. Ke. 2016. Multidimensional roles of collagen triple helix repeat containing 1 (CTHRC1) in malignant cancers. Journal of Cancer 7: 2213–2220.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Mei, D., Y. Zhu, L. Zhang, and W. Wei. 2020. The role of CTHRC1 in regulation of multiple signaling and tumor progression and metastasis. Mediators of Inflammation 2020: 9578701.PubMedPubMedCentralCrossRef Mei, D., Y. Zhu, L. Zhang, and W. Wei. 2020. The role of CTHRC1 in regulation of multiple signaling and tumor progression and metastasis. Mediators of Inflammation 2020: 9578701.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Tsukui, T., K.-H. Sun, J.B. Wetter, J.R. Wilson-Kanamori, L.A. Hazelwood, N.C. Henderson, T.S. Adams, J.C. Schupp, S.D. Poli, I.O. Rosas, N. Kaminski, M.A. Matthay, P.J. Wolters, and D. Sheppard. 2020. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications 11: 1920.PubMedPubMedCentralCrossRef Tsukui, T., K.-H. Sun, J.B. Wetter, J.R. Wilson-Kanamori, L.A. Hazelwood, N.C. Henderson, T.S. Adams, J.C. Schupp, S.D. Poli, I.O. Rosas, N. Kaminski, M.A. Matthay, P.J. Wolters, and D. Sheppard. 2020. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications 11: 1920.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat LeClair, R.J., T. Durmus, Q. Wang, P. Pyagay, A. Terzic, and V. Lindner. 2007. Cthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation. Circulation research 100: 826–833.PubMedCrossRef LeClair, R.J., T. Durmus, Q. Wang, P. Pyagay, A. Terzic, and V. Lindner. 2007. Cthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation. Circulation research 100: 826–833.PubMedCrossRef
18.
Zurück zum Zitat Li, J., Y. Wang, M. Ma, S. Jiang, X. Zhang, Y. Zhang, X. Yang, C. Xu, G. Tian, Q. Li, Y. Wang, L. Zhu, H. Nie, M. Feng, Q. Xia, J. Gu, Q. Xu, and Z. Zhang. 2019. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-β signaling. eBioMedicine 40: 43–55.PubMedPubMedCentralCrossRef Li, J., Y. Wang, M. Ma, S. Jiang, X. Zhang, Y. Zhang, X. Yang, C. Xu, G. Tian, Q. Li, Y. Wang, L. Zhu, H. Nie, M. Feng, Q. Xia, J. Gu, Q. Xu, and Z. Zhang. 2019. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-β signaling. eBioMedicine 40: 43–55.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Myngbay, A., and L. Manarbek. 2021. The role of collagen triple helix repeat-containing 1 protein (CTHRC1) in rheumatoid arthritis. International Journal of Molecular Sciences 22: 2426.PubMedPubMedCentralCrossRef Myngbay, A., and L. Manarbek. 2021. The role of collagen triple helix repeat-containing 1 protein (CTHRC1) in rheumatoid arthritis. International Journal of Molecular Sciences 22: 2426.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Smith, L.C., S. Moreno, L. Robertson, S. Robinson, K. Gant, A.J. Bryant, and T. Sabo-Attwood. 2018. Transforming growth factor beta1 targets estrogen receptor signaling in bronchial epithelial cells. Respiratory Research 19: 160.PubMedPubMedCentralCrossRef Smith, L.C., S. Moreno, L. Robertson, S. Robinson, K. Gant, A.J. Bryant, and T. Sabo-Attwood. 2018. Transforming growth factor beta1 targets estrogen receptor signaling in bronchial epithelial cells. Respiratory Research 19: 160.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Ni, S., F. Ren, M. Xu, C. Tan, W. Weng, Z. Huang, W. Sheng, and D. Huang. 2018. CTHRC1 overexpression predicts poor survival and enhances epithelial-mesenchymal transition in colorectal cancer. Cancer Medicine 7: 5643–5654.PubMedPubMedCentralCrossRef Ni, S., F. Ren, M. Xu, C. Tan, W. Weng, Z. Huang, W. Sheng, and D. Huang. 2018. CTHRC1 overexpression predicts poor survival and enhances epithelial-mesenchymal transition in colorectal cancer. Cancer Medicine 7: 5643–5654.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Tai, Y., Y. Zhu, D. Mei, H. Wang, Q. Yu, C. Hong, X. Cai, L. Xu, J. Ge, F. Liang, C. Jiang, Z. Xue, L. Hu, R. Liu, T. Zhang, P. Wang, X. Zhang, F. Zhang, W. Wei, and L. Zhang. 2021. IgD promotes pannus formation by activating Wnt5A-Fzd5-CTHRC1-NF-κB signaling pathway in FLS of CIA rats and the regulation of IgD-Fc-Ig fusion protein. International immunopharmacology 101: 108261.PubMedCrossRef Tai, Y., Y. Zhu, D. Mei, H. Wang, Q. Yu, C. Hong, X. Cai, L. Xu, J. Ge, F. Liang, C. Jiang, Z. Xue, L. Hu, R. Liu, T. Zhang, P. Wang, X. Zhang, F. Zhang, W. Wei, and L. Zhang. 2021. IgD promotes pannus formation by activating Wnt5A-Fzd5-CTHRC1-NF-κB signaling pathway in FLS of CIA rats and the regulation of IgD-Fc-Ig fusion protein. International immunopharmacology 101: 108261.PubMedCrossRef
23.
Zurück zum Zitat Jin, Y.R., J.P. Stohn, Q. Wang, K. Nagano, R. Baron, M.L. Bouxsein, C.J. Rosen, V.A. Adarichev, and V. Lindner. 2017. Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1. Bone 97: 153–167.PubMedPubMedCentralCrossRef Jin, Y.R., J.P. Stohn, Q. Wang, K. Nagano, R. Baron, M.L. Bouxsein, C.J. Rosen, V.A. Adarichev, and V. Lindner. 2017. Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1. Bone 97: 153–167.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Myngbay, A., Y. Bexeitov, A. Adilbayeva, Z. Assylbekov, B.P. Yevstratenko, R.M. Aitzhanova, B. Matkarimov, V.A. Adarichev, and J. Kunz. 2019. CTHRC1: A new candidate biomarker for improved rheumatoid arthritis diagnosis. Frontiers In Immunology 10: 1353.PubMedPubMedCentralCrossRef Myngbay, A., Y. Bexeitov, A. Adilbayeva, Z. Assylbekov, B.P. Yevstratenko, R.M. Aitzhanova, B. Matkarimov, V.A. Adarichev, and J. Kunz. 2019. CTHRC1: A new candidate biomarker for improved rheumatoid arthritis diagnosis. Frontiers In Immunology 10: 1353.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Myou, S., A.R. Leff, S. Myo, E. Boetticher, J. Tong, A.Y. Meliton, J. Liu, N.M. Munoz, and X. Zhu. 2003. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. The Journal of Experimental Medicine 198: 1573–1582.PubMedPubMedCentralCrossRef Myou, S., A.R. Leff, S. Myo, E. Boetticher, J. Tong, A.Y. Meliton, J. Liu, N.M. Munoz, and X. Zhu. 2003. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. The Journal of Experimental Medicine 198: 1573–1582.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Pu, Y., Y. Liu, S. Liao, S. Miao, L. Zhou, and L. Wan. 2018. Azithromycin ameliorates OVA-induced airway remodeling in Balb/c mice via suppression of epithelial-to-mesenchymal transition. International Immunopharmacology 58: 87–93.PubMedCrossRef Pu, Y., Y. Liu, S. Liao, S. Miao, L. Zhou, and L. Wan. 2018. Azithromycin ameliorates OVA-induced airway remodeling in Balb/c mice via suppression of epithelial-to-mesenchymal transition. International Immunopharmacology 58: 87–93.PubMedCrossRef
27.
Zurück zum Zitat Wu, L.Q., R.L. Wang, Y.R. Dai, F.Q. Li, H.Y. Wu, S.S. Yan, L.R. Wang, L.D. Jin, and X.D. Xia. 2015. Roxithromycin suppresses airway remodeling and modulates the expression of caveolin-1 and phospho-p42/p44MAPK in asthmatic rats. International immunopharmacology 24: 247–255.PubMedCrossRef Wu, L.Q., R.L. Wang, Y.R. Dai, F.Q. Li, H.Y. Wu, S.S. Yan, L.R. Wang, L.D. Jin, and X.D. Xia. 2015. Roxithromycin suppresses airway remodeling and modulates the expression of caveolin-1 and phospho-p42/p44MAPK in asthmatic rats. International immunopharmacology 24: 247–255.PubMedCrossRef
28.
Zurück zum Zitat Loh, C.-Y., J.Y. Chai, T.F. Tang, W.F. Wong, G. Sethi, M.K. Shanmugam, P.P. Chong, and C.Y. Looi. 2019. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells 8: 1118.PubMedPubMedCentralCrossRef Loh, C.-Y., J.Y. Chai, T.F. Tang, W.F. Wong, G. Sethi, M.K. Shanmugam, P.P. Chong, and C.Y. Looi. 2019. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells 8: 1118.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Lee, H.-W., C.C. Jose, and S. Cuddapah. 2021. Epithelial-mesenchymal transition: Insights into nickel-induced lung diseases. Seminars In Cancer Biology 76: 99–109.PubMedPubMedCentralCrossRef Lee, H.-W., C.C. Jose, and S. Cuddapah. 2021. Epithelial-mesenchymal transition: Insights into nickel-induced lung diseases. Seminars In Cancer Biology 76: 99–109.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Banno, A., A.T. Reddy, S.P. Lakshmi, and R.C. Reddy. 2020. Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clinical Science 134: 1063–1079.PubMedCrossRef Banno, A., A.T. Reddy, S.P. Lakshmi, and R.C. Reddy. 2020. Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clinical Science 134: 1063–1079.PubMedCrossRef
31.
Zurück zum Zitat Gubernatorova, E.O., O.A. Namakanova, A.V. Tumanov, M.S. Drutskaya, and S.A. Nedospasov. 2019. Mouse models of severe asthma for evaluation of therapeutic cytokine targeting. Immunology Letters 207: 73–83.PubMedCrossRef Gubernatorova, E.O., O.A. Namakanova, A.V. Tumanov, M.S. Drutskaya, and S.A. Nedospasov. 2019. Mouse models of severe asthma for evaluation of therapeutic cytokine targeting. Immunology Letters 207: 73–83.PubMedCrossRef
32.
Zurück zum Zitat Bates, J.H.T., M. Rincon, and C.G. Irvin. 2009. Animal models of asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology 297: L401–L410.PubMedPubMedCentralCrossRef Bates, J.H.T., M. Rincon, and C.G. Irvin. 2009. Animal models of asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology 297: L401–L410.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Komi, Elieh Ali, and D. and L. Bjermer. 2019. Mast cell-mediated orchestration of the immune responses in human allergic asthma: Current insights. Clinical Reviews in Allergy & Immunology 56: 234–247.CrossRef Komi, Elieh Ali, and D. and L. Bjermer. 2019. Mast cell-mediated orchestration of the immune responses in human allergic asthma: Current insights. Clinical Reviews in Allergy & Immunology 56: 234–247.CrossRef
34.
Zurück zum Zitat Jia, A., Y. Wang, W. Sun, B. Xiao, L. Mu, Y. Wei, L. Xu, C. Peng, D. Zhang, H. Shen, and X. Xiang. 2017. Comparison of the roles of house dust mite allergens, ovalbumin and lipopolysaccharides in the sensitization of mice to establish a model of severe neutrophilic asthma. Experimental and Therapeutic Medicine 14: 2126–2134.PubMedPubMedCentralCrossRef Jia, A., Y. Wang, W. Sun, B. Xiao, L. Mu, Y. Wei, L. Xu, C. Peng, D. Zhang, H. Shen, and X. Xiang. 2017. Comparison of the roles of house dust mite allergens, ovalbumin and lipopolysaccharides in the sensitization of mice to establish a model of severe neutrophilic asthma. Experimental and Therapeutic Medicine 14: 2126–2134.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Liu, Y., L. Wei, C. He, R. Chen, and L. Meng. 2021. Lipoxin A4 inhibits ovalbumin-induced airway inflammation and airway remodeling in a mouse model of asthma. Chemico-biological Interactions 349: 109660.PubMedCrossRef Liu, Y., L. Wei, C. He, R. Chen, and L. Meng. 2021. Lipoxin A4 inhibits ovalbumin-induced airway inflammation and airway remodeling in a mouse model of asthma. Chemico-biological Interactions 349: 109660.PubMedCrossRef
36.
Zurück zum Zitat Al-Muhsen, S., J.R. Johnson, and Q. Hamid. 2011. Remodeling in asthma. The Journal of Allergy and Clinical Immunology 128: 451–462.PubMedCrossRef Al-Muhsen, S., J.R. Johnson, and Q. Hamid. 2011. Remodeling in asthma. The Journal of Allergy and Clinical Immunology 128: 451–462.PubMedCrossRef
37.
Zurück zum Zitat Jin, J., and S. Togo. 2019. Pirfenidone attenuates lung fibrotic fibroblast responses to transforming growth factor-β1. Respiratory Research 20: 119.PubMedPubMedCentralCrossRef Jin, J., and S. Togo. 2019. Pirfenidone attenuates lung fibrotic fibroblast responses to transforming growth factor-β1. Respiratory Research 20: 119.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Bian, Z., Q. Miao, W. Zhong, H. Zhang, Q. Wang, Y. Peng, X. Chen, C. Guo, L. Shen, F. Yang, J. Xu, D. Qiu, J. Fang, S. Friedman, R. Tang, M.E. Gershwin, and X. Ma. 2015. Treatment of cholestatic fibrosis by altering gene expression of Cthrc1: Implications for autoimmune and non-autoimmune liver disease. Journal of Autoimmunity 63: 76–87.PubMedPubMedCentralCrossRef Bian, Z., Q. Miao, W. Zhong, H. Zhang, Q. Wang, Y. Peng, X. Chen, C. Guo, L. Shen, F. Yang, J. Xu, D. Qiu, J. Fang, S. Friedman, R. Tang, M.E. Gershwin, and X. Ma. 2015. Treatment of cholestatic fibrosis by altering gene expression of Cthrc1: Implications for autoimmune and non-autoimmune liver disease. Journal of Autoimmunity 63: 76–87.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Shen, Z., T. Su, J. Chen, Z. Xie, and J. Li. 2021. Collagen triple helix repeat containing-1 exerts antifibrotic effects on human skin fibroblast and bleomycin-induced dermal fibrosis models. Annals of Translational Medicine 9: 801.PubMedPubMedCentralCrossRef Shen, Z., T. Su, J. Chen, Z. Xie, and J. Li. 2021. Collagen triple helix repeat containing-1 exerts antifibrotic effects on human skin fibroblast and bleomycin-induced dermal fibrosis models. Annals of Translational Medicine 9: 801.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Pain, M., O. Bermudez, P. Lacoste, P.J. Royer, K. Botturi, A. Tissot, S. Brouard, O. Eickelberg, and A. Magnan. 2014. Tissue remodelling in chronic bronchial diseases: From the epithelial to mesenchymal phenotype. European Respiratory Review 23: 118–130.PubMedPubMedCentralCrossRef Pain, M., O. Bermudez, P. Lacoste, P.J. Royer, K. Botturi, A. Tissot, S. Brouard, O. Eickelberg, and A. Magnan. 2014. Tissue remodelling in chronic bronchial diseases: From the epithelial to mesenchymal phenotype. European Respiratory Review 23: 118–130.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Yang, Z.C., Z.H. Qu, M.J. Yi, Y.C. Shan, N. Ran, L. Xu, and X.J. Liu. 2019. MiR-448-5p inhibits TGF-β1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma. Journal of cellular physiology 234: 8804–8814.PubMedCrossRef Yang, Z.C., Z.H. Qu, M.J. Yi, Y.C. Shan, N. Ran, L. Xu, and X.J. Liu. 2019. MiR-448-5p inhibits TGF-β1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma. Journal of cellular physiology 234: 8804–8814.PubMedCrossRef
42.
Zurück zum Zitat Fan, Q., and Y. Jian. 2020. MiR-203a-3p regulates TGF-β1-induced epithelial-mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1. Bioscience reports 40: BSR20192645. Fan, Q., and Y. Jian. 2020. MiR-203a-3p regulates TGF-β1-induced epithelial-mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1. Bioscience reports 40: BSR20192645.
43.
Zurück zum Zitat Serrano-Gomez, S.J., M. Maziveyi, and S.K. Alahari. 2016. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Molecular Cancer 15: 18.PubMedPubMedCentralCrossRef Serrano-Gomez, S.J., M. Maziveyi, and S.K. Alahari. 2016. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Molecular Cancer 15: 18.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Liu, J., W. Li, S. Liu, X. Zheng, L. Shi, W. Zhang, and H. Yang. 2017. Knockdown of collagen triple helix repeat containing 1 (CTHRC1) inhibits epithelial-mesenchymal transition and cellular migration in glioblastoma cells. Oncology Research 25: 225–232.PubMedPubMedCentralCrossRef Liu, J., W. Li, S. Liu, X. Zheng, L. Shi, W. Zhang, and H. Yang. 2017. Knockdown of collagen triple helix repeat containing 1 (CTHRC1) inhibits epithelial-mesenchymal transition and cellular migration in glioblastoma cells. Oncology Research 25: 225–232.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Mostaço-Guidolin, L.B., E.T. Osei, J. Ullah, S. Hajimohammadi, M. Fouadi, X. Li, V. Li, F. Shaheen, C.X. Yang, F. Chu, D.J. Cole, C.A. Brandsma, I.H. Heijink, G.N. Maksym, D. Walker, and T.L. Hackett. 2019. Defective fibrillar collagen organization by fibroblasts contributes to airway remodeling in asthma. American Journal of Respiratory and Critical Care Medicine 200: 431–443.PubMedCrossRef Mostaço-Guidolin, L.B., E.T. Osei, J. Ullah, S. Hajimohammadi, M. Fouadi, X. Li, V. Li, F. Shaheen, C.X. Yang, F. Chu, D.J. Cole, C.A. Brandsma, I.H. Heijink, G.N. Maksym, D. Walker, and T.L. Hackett. 2019. Defective fibrillar collagen organization by fibroblasts contributes to airway remodeling in asthma. American Journal of Respiratory and Critical Care Medicine 200: 431–443.PubMedCrossRef
46.
Zurück zum Zitat Boonpiyathad, T., Z.C. Sözener, P. Satitsuksanoa, and C.A. Akdis. 2019. Immunologic mechanisms in asthma. Seminars In Immunology 46: 101333.PubMedCrossRef Boonpiyathad, T., Z.C. Sözener, P. Satitsuksanoa, and C.A. Akdis. 2019. Immunologic mechanisms in asthma. Seminars In Immunology 46: 101333.PubMedCrossRef
47.
Zurück zum Zitat Lambrecht, B.N., H. Hammad, and J.V. Fahy. 2019. The cytokines of asthma. Immunity 50: 975–991.PubMedCrossRef Lambrecht, B.N., H. Hammad, and J.V. Fahy. 2019. The cytokines of asthma. Immunity 50: 975–991.PubMedCrossRef
48.
49.
Zurück zum Zitat Seibold, M.A. 2018. Interleukin-13 stimulation reveals the cellular and functional plasticity of the airway epithelium. Annals of the American Thoracic Society 15: S98–S102.PubMedPubMedCentralCrossRef Seibold, M.A. 2018. Interleukin-13 stimulation reveals the cellular and functional plasticity of the airway epithelium. Annals of the American Thoracic Society 15: S98–S102.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Tay, H.L., and P.S. Foster. 2020. Biologics or immunotherapeutics for asthma? Pharmacological Research 158: 104782.PubMedCrossRef Tay, H.L., and P.S. Foster. 2020. Biologics or immunotherapeutics for asthma? Pharmacological Research 158: 104782.PubMedCrossRef
Metadaten
Titel
Collagen Triple Helix Repeat Containing 1 Deficiency Protects Against Airway Remodeling and Inflammation in Asthma Models In Vivo and In Vitro
verfasst von
Yong Feng
Jiapeng Hu
Fen Liu
Yunxiao Shang
Publikationsdatum
14.01.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01781-3

Weitere Artikel der Ausgabe 3/2023

Inflammation 3/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.