Skip to main content
Erschienen in: Inflammation 6/2022

31.05.2022 | COVID-19 | Review

Macrophage-Targeted Nanomedicines for ARDS/ALI: Promise and Potential

verfasst von: Riddhi Vichare, Jelena M. Janjic

Erschienen in: Inflammation | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by progressive lung impairment typically triggered by inflammatory processes. The mortality toll for ARDS/ALI yet remains high because of the poor prognosis, lack of disease-specific inflammation management therapies, and prolonged hospitalizations. The urgency for the development of new effective therapeutic strategies has become acutely evident for patients with coronavirus disease 2019 (COVID-19) who are highly susceptible to ARDS/ALI. We propose that the lack of target specificity in ARDS/ALI of current treatments is one of the reasons for poor patient outcomes. Unlike traditional therapeutics, nanomedicine offers precise drug targeting to inflamed tissues, the capacity to surmount pulmonary barriers, enhanced interactions with lung epithelium, and the potential to reduce off-target and systemic adverse effects. In this article, we focus on the key cellular drivers of inflammation in ARDS/ALI: macrophages. We propose that as macrophages are involved in the etiology of ARDS/ALI and regulate inflammatory cascades, they are a promising target for new therapeutic development. In this review, we offer a survey of multiple nanomedicines that are currently being investigated with promising macrophage targeting potential and strategies for pulmonary delivery. Specifically, we will focus on nanomedicines that have shown engagement with proinflammatory macrophage targets and have the potential to reduce inflammation and reverse tissue damage in ARDS/ALI.

Graphical abstract

Literatur
1.
Zurück zum Zitat Warren, M.A., et al. 2018. Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax 73 (9): 840–846.PubMedCrossRef Warren, M.A., et al. 2018. Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax 73 (9): 840–846.PubMedCrossRef
2.
Zurück zum Zitat Baron, R.M., and B.D. Levy. 2016. Recent advances in understanding and treating ARDS. F1000Research 5. Baron, R.M., and B.D. Levy. 2016. Recent advances in understanding and treating ARDS. F1000Research 5.
3.
Zurück zum Zitat Yang, S.-C., et al. 2021. Understanding the role of neutrophils in acute respiratory distress syndrome. Biomedical Journal 44 (4): 439–446.PubMedCrossRef Yang, S.-C., et al. 2021. Understanding the role of neutrophils in acute respiratory distress syndrome. Biomedical Journal 44 (4): 439–446.PubMedCrossRef
4.
Zurück zum Zitat Huang, X., et al. 2018. The role of macrophages in the pathogenesis of ALI/ARDS. Mediators of Inflammation 2018. Huang, X., et al. 2018. The role of macrophages in the pathogenesis of ALI/ARDS. Mediators of Inflammation 2018.
5.
Zurück zum Zitat Petty, T.L., and D.G. Ashbaugh. 1971. The adult respiratory distress syndrome: Clinical features, factors influencing prognosis and principles of management. Chest 60 (3): 233–239.PubMedCrossRef Petty, T.L., and D.G. Ashbaugh. 1971. The adult respiratory distress syndrome: Clinical features, factors influencing prognosis and principles of management. Chest 60 (3): 233–239.PubMedCrossRef
6.
Zurück zum Zitat Murray, J.F., et al. 1988. An expanded definition of the adult respiratory distress syndrome. The American Review of Respiratory Disease 138 (3): 720–723.PubMedCrossRef Murray, J.F., et al. 1988. An expanded definition of the adult respiratory distress syndrome. The American Review of Respiratory Disease 138 (3): 720–723.PubMedCrossRef
7.
Zurück zum Zitat Bernard, G.R., et al. 1994. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American Journal of Respiratory and Critical Care Medicine 149 (3): 818–824. Bernard, G.R., et al. 1994. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American Journal of Respiratory and Critical Care Medicine 149 (3): 818–824.
8.
Zurück zum Zitat Force, A.D.T., et al. 2012. Acute respiratory distress syndrome. JAMA 307 (23): 2526–2533. Force, A.D.T., et al. 2012. Acute respiratory distress syndrome. JAMA 307 (23): 2526–2533.
9.
Zurück zum Zitat Riviello, E.D., et al. 2016. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali modification of the Berlin definition. American Journal of Respiratory and Critical Care Medicine 193 (1): 52–59.PubMedCrossRef Riviello, E.D., et al. 2016. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali modification of the Berlin definition. American Journal of Respiratory and Critical Care Medicine 193 (1): 52–59.PubMedCrossRef
10.
Zurück zum Zitat Matthay, M.A., B.T. Thompson, and L.B. Ware. 2021. The Berlin definition of acute respiratory distress syndrome: Should patients receiving high-flow nasal oxygen be included? The Lancet Respiratory Medicine 9 (8): 933–936.PubMedPubMedCentralCrossRef Matthay, M.A., B.T. Thompson, and L.B. Ware. 2021. The Berlin definition of acute respiratory distress syndrome: Should patients receiving high-flow nasal oxygen be included? The Lancet Respiratory Medicine 9 (8): 933–936.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Ashbaugh, D., et al. 1967. Acute respiratory distress in adults. The Lancet 290 (7511): 319–323.CrossRef Ashbaugh, D., et al. 1967. Acute respiratory distress in adults. The Lancet 290 (7511): 319–323.CrossRef
12.
Zurück zum Zitat Simou, E., J. Leonardi-Bee, and J. Britton. 2018. The effect of alcohol consumption on the risk of ARDS: A systematic review and meta-analysis. Chest 154 (1): 58–68.PubMedCrossRef Simou, E., J. Leonardi-Bee, and J. Britton. 2018. The effect of alcohol consumption on the risk of ARDS: A systematic review and meta-analysis. Chest 154 (1): 58–68.PubMedCrossRef
13.
Zurück zum Zitat Moazed, F., et al. 2022. Cigarette Smoke Exposure and ARDS in Sepsis: Epidemiology, Clinical Features, and Biologic Markers. American Journal of Respiratory and Critical Care Medicine 2022 (ja). Moazed, F., et al. 2022. Cigarette Smoke Exposure and ARDS in Sepsis: Epidemiology, Clinical Features, and Biologic Markers. American Journal of Respiratory and Critical Care Medicine 2022 (ja).
14.
Zurück zum Zitat McNeil, J.B., et al. 2021. Linear Association Between Hypoalbuminemia and Increased Risk of Acute Respiratory Distress Syndrome in Critically Ill Adults. Critical Care Explorations 3 (9). McNeil, J.B., et al. 2021. Linear Association Between Hypoalbuminemia and Increased Risk of Acute Respiratory Distress Syndrome in Critically Ill Adults. Critical Care Explorations 3 (9).
15.
Zurück zum Zitat Tzotzos, S.J., et al. 2020. Incidence of ARDS and outcomes in hospitalized patients with COVID-19: A global literature survey. Critical Care 24 (1): 1–4.CrossRef Tzotzos, S.J., et al. 2020. Incidence of ARDS and outcomes in hospitalized patients with COVID-19: A global literature survey. Critical Care 24 (1): 1–4.CrossRef
16.
Zurück zum Zitat Parcha, V., et al. 2021. Trends and Geographic Variation in Acute Respiratory Failure and ARDS Mortality in the United States. Chest 159 (4): 1460–1472.PubMedCrossRef Parcha, V., et al. 2021. Trends and Geographic Variation in Acute Respiratory Failure and ARDS Mortality in the United States. Chest 159 (4): 1460–1472.PubMedCrossRef
17.
Zurück zum Zitat Ragaller, M., and T. Richter. 2010. Acute lung injury and acute respiratory distress syndrome. Journal of Emergencies, Trauma and Shock 3 (1): 43.PubMedCentralCrossRef Ragaller, M., and T. Richter. 2010. Acute lung injury and acute respiratory distress syndrome. Journal of Emergencies, Trauma and Shock 3 (1): 43.PubMedCentralCrossRef
19.
Zurück zum Zitat Taylor, R.W., et al. 2004. Low-dose inhaled nitric oxide in patients with acute lung injury: A randomized controlled trial. JAMA 291 (13): 1603–1609.PubMedCrossRef Taylor, R.W., et al. 2004. Low-dose inhaled nitric oxide in patients with acute lung injury: A randomized controlled trial. JAMA 291 (13): 1603–1609.PubMedCrossRef
20.
Zurück zum Zitat Matthay, M.A., D.F. McAuley, and L.B. Ware. 2017. Clinical trials in acute respiratory distress syndrome: Challenges and opportunities. The Lancet Respiratory Medicine 5 (6): 524–534.PubMedCrossRef Matthay, M.A., D.F. McAuley, and L.B. Ware. 2017. Clinical trials in acute respiratory distress syndrome: Challenges and opportunities. The Lancet Respiratory Medicine 5 (6): 524–534.PubMedCrossRef
21.
Zurück zum Zitat Slutsky, A.S. and V. Marco Ranieri. 2000. Mechanical ventilation: lessons from the ARDSNet trial. Respiratory Research 1 (2): 1–5. Slutsky, A.S. and V. Marco Ranieri. 2000. Mechanical ventilation: lessons from the ARDSNet trial. Respiratory Research 1 (2): 1–5.
22.
Zurück zum Zitat Bellani, G., et al. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315 (8): 788–800.PubMedCrossRef Bellani, G., et al. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315 (8): 788–800.PubMedCrossRef
23.
Zurück zum Zitat Network, A.R.D.S. 2000. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. New England Journal of Medicine 342 (18): 1301–1308.CrossRef Network, A.R.D.S. 2000. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. New England Journal of Medicine 342 (18): 1301–1308.CrossRef
24.
Zurück zum Zitat Young, P.J., and R. Bellomo. 2019. The risk of hyperoxemia in ICU patients. Much ado about O2. American Thoracic Society 200: 1333–1335. Young, P.J., and R. Bellomo. 2019. The risk of hyperoxemia in ICU patients. Much ado about O2. American Thoracic Society 200: 1333–1335.
25.
Zurück zum Zitat Panguluri, S.K., et al. 2013. Hyperoxia-induced hypertrophy and ion channel remodeling in left ventricle. American Journal of Physiology-Heart and Circulatory Physiology 304 (12): H1651–H1661.PubMedPubMedCentralCrossRef Panguluri, S.K., et al. 2013. Hyperoxia-induced hypertrophy and ion channel remodeling in left ventricle. American Journal of Physiology-Heart and Circulatory Physiology 304 (12): H1651–H1661.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Park, J., et al. 2018. Histopathologic heterogeneity of acute respiratory distress syndrome revealed by surgical lung biopsy and its clinical implications. The Korean Journal of Internal Medicine 33 (3): 532.PubMedCrossRef Park, J., et al. 2018. Histopathologic heterogeneity of acute respiratory distress syndrome revealed by surgical lung biopsy and its clinical implications. The Korean Journal of Internal Medicine 33 (3): 532.PubMedCrossRef
27.
Zurück zum Zitat Calfee, C.S., et al. 2014. Subphenotypes in acute respiratory distress syndrome: Latent class analysis of data from two randomised controlled trials. The Lancet Respiratory Medicine 2 (8): 611–620.PubMedPubMedCentralCrossRef Calfee, C.S., et al. 2014. Subphenotypes in acute respiratory distress syndrome: Latent class analysis of data from two randomised controlled trials. The Lancet Respiratory Medicine 2 (8): 611–620.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Deng, Z., et al. 2021. Nanoparticle delivery systems with cell-specific targeting for pulmonary diseases. American Journal of Respiratory Cell and Molecular Biology 64 (3): 292–307.PubMedPubMedCentralCrossRef Deng, Z., et al. 2021. Nanoparticle delivery systems with cell-specific targeting for pulmonary diseases. American Journal of Respiratory Cell and Molecular Biology 64 (3): 292–307.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Kinevant Sciences GmbH, and Roivant Sciences, Inc. 2020. A Study to Assess the Efficacy and Safety of Gimsilumab in Subjects With Lung Injury or Acute Respiratory Distress Syndrome Secondary to COVID-19 (BREATHE). https://ClinicalTrials.gov/show/NCT04351243. Accessed Date March 29th, 2022. Kinevant Sciences GmbH, and Roivant Sciences, Inc. 2020. A Study to Assess the Efficacy and Safety of Gimsilumab in Subjects With Lung Injury or Acute Respiratory Distress Syndrome Secondary to COVID-19 (BREATHE). https://​ClinicalTrials.​gov/​show/​NCT04351243. Accessed Date March 29th, 2022.
37.
Zurück zum Zitat Chen, X., et al. 2020. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflammation Research 69 (9): 883–895. Chen, X., et al. 2020. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflammation Research 69 (9): 883–895.
38.
Zurück zum Zitat Janssen, W.J., et al. 2011. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. American Journal of Respiratory and Critical Care Medicine 184 (5): 547–560.PubMedPubMedCentralCrossRef Janssen, W.J., et al. 2011. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. American Journal of Respiratory and Critical Care Medicine 184 (5): 547–560.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Song, C., et al. 2019. NETs promote ALI/ARDS inflammation by regulating alveolar macrophage polarization. Experimental Cell Research 382 (2): 111486.PubMedCrossRef Song, C., et al. 2019. NETs promote ALI/ARDS inflammation by regulating alveolar macrophage polarization. Experimental Cell Research 382 (2): 111486.PubMedCrossRef
40.
Zurück zum Zitat Liao, M., et al. 2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nature Medicine 26 (6): 842–844.PubMedCrossRef Liao, M., et al. 2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nature Medicine 26 (6): 842–844.PubMedCrossRef
41.
Zurück zum Zitat Strunk, R.C., D.M. Eidlen, and R.J. Mason. 1988. Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. The Journal of Clinical Investigation 81 (5): 1419–1426.PubMedPubMedCentralCrossRef Strunk, R.C., D.M. Eidlen, and R.J. Mason. 1988. Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. The Journal of Clinical Investigation 81 (5): 1419–1426.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Matthay, M.A., et al. 2019. Acute respiratory distress syndrome. Nature Reviews Disease Primers 5 (1): 1–22.CrossRef Matthay, M.A., et al. 2019. Acute respiratory distress syndrome. Nature Reviews Disease Primers 5 (1): 1–22.CrossRef
43.
Zurück zum Zitat Umbrello, M., et al. 2017. Current concepts of ARDS: A narrative review. International Journal of Molecular Sciences 18 (1): 64.CrossRef Umbrello, M., et al. 2017. Current concepts of ARDS: A narrative review. International Journal of Molecular Sciences 18 (1): 64.CrossRef
44.
Zurück zum Zitat Matthay, M.A. 2014. Resolution of pulmonary edema. Thirty years of progress. American Journal of Respiratory and Critical Care Medicine 189 (11): 1301–1308. Matthay, M.A. 2014. Resolution of pulmonary edema. Thirty years of progress. American Journal of Respiratory and Critical Care Medicine 189 (11): 1301–1308.
46.
Zurück zum Zitat Rocco, P., C. Dos Santos, and P. Pelosi. 2009. Lung parenchyma remodeling in acute respiratory distress syndrome. Minerva Anestesiologica 75 (12): 730–740.PubMed Rocco, P., C. Dos Santos, and P. Pelosi. 2009. Lung parenchyma remodeling in acute respiratory distress syndrome. Minerva Anestesiologica 75 (12): 730–740.PubMed
47.
Zurück zum Zitat Bhattacharya, J., and M.A. Matthay. 2013. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annual Review of Physiology 75: 593–615.PubMedCrossRef Bhattacharya, J., and M.A. Matthay. 2013. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annual Review of Physiology 75: 593–615.PubMedCrossRef
48.
Zurück zum Zitat Shapouri-Moghaddam, A., et al. 2018. Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology 233 (9): 6425–6440.PubMedCrossRef Shapouri-Moghaddam, A., et al. 2018. Macrophage plasticity, polarization, and function in health and disease. Journal of Cellular Physiology 233 (9): 6425–6440.PubMedCrossRef
49.
Zurück zum Zitat Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular Medicine 17 (3): 293–307.PubMedCrossRef Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular Medicine 17 (3): 293–307.PubMedCrossRef
50.
Zurück zum Zitat Nuckton, T.J., et al. 2002. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. New England Journal of Medicine 346 (17): 1281–1286.PubMedCrossRef Nuckton, T.J., et al. 2002. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. New England Journal of Medicine 346 (17): 1281–1286.PubMedCrossRef
51.
Zurück zum Zitat Gordon, S., A. Plüddemann, and F. Martinez Estrada. 2014. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunological Reviews 262 (1): 36–55. Gordon, S., A. Plüddemann, and F. Martinez Estrada. 2014. Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunological Reviews 262 (1): 36–55.
52.
Zurück zum Zitat Tan, S.Y., and M.A. Krasnow. 2016. Developmental origin of lung macrophage diversity. Development 143 (8): 1318–1327.PubMedPubMedCentral Tan, S.Y., and M.A. Krasnow. 2016. Developmental origin of lung macrophage diversity. Development 143 (8): 1318–1327.PubMedPubMedCentral
54.
Zurück zum Zitat Mould, K.J., et al. 2017. Cell origin dictates programming of resident versus recruited macrophages during acute lung injury. American Journal of Respiratory Cell and Molecular Biology 57 (3): 294–306.PubMedPubMedCentralCrossRef Mould, K.J., et al. 2017. Cell origin dictates programming of resident versus recruited macrophages during acute lung injury. American Journal of Respiratory Cell and Molecular Biology 57 (3): 294–306.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Wajant, H. 2002. The Fas signaling pathway: More than a paradigm. Science 296 (5573): 1635–1636.PubMedCrossRef Wajant, H. 2002. The Fas signaling pathway: More than a paradigm. Science 296 (5573): 1635–1636.PubMedCrossRef
56.
Zurück zum Zitat Wang, F., et al. 2010. Fas (CD95) induces rapid, TLR4/IRAK4-dependent release of pro-inflammatory HMGB1 from macrophages. Journal of inflammation 7 (1): 1–8.CrossRef Wang, F., et al. 2010. Fas (CD95) induces rapid, TLR4/IRAK4-dependent release of pro-inflammatory HMGB1 from macrophages. Journal of inflammation 7 (1): 1–8.CrossRef
57.
Zurück zum Zitat Biswas, S.K., and A. Mantovani. 2012. Orchestration of metabolism by macrophages. Cell metabolism 15 (4): 432–437.PubMedCrossRef Biswas, S.K., and A. Mantovani. 2012. Orchestration of metabolism by macrophages. Cell metabolism 15 (4): 432–437.PubMedCrossRef
58.
Zurück zum Zitat Bashir, S., et al. 2016. Macrophage polarization: the link between inflammation and related diseases. Inflammation Research 65 (1). Bashir, S., et al. 2016. Macrophage polarization: the link between inflammation and related diseases. Inflammation Research 65 (1).
59.
Zurück zum Zitat Biswas, S.K., et al. 2012. Macrophage polarization and plasticity in health and disease. Immunologic Research 53 (1): 11–24.PubMedCrossRef Biswas, S.K., et al. 2012. Macrophage polarization and plasticity in health and disease. Immunologic Research 53 (1): 11–24.PubMedCrossRef
60.
Zurück zum Zitat Porta, C., et al. 2015. Molecular and epigenetic basis of macrophage polarized activation. In Seminars in immunology. Elsevier. Porta, C., et al. 2015. Molecular and epigenetic basis of macrophage polarized activation. In Seminars in immunology. Elsevier.
61.
Zurück zum Zitat Tomashefski, J.F., Jr. 2000. Pulmonary pathology of acute respiratory distress syndrome. Clinics in Chest Medicine 21 (3): 435–466.PubMedCrossRef Tomashefski, J.F., Jr. 2000. Pulmonary pathology of acute respiratory distress syndrome. Clinics in Chest Medicine 21 (3): 435–466.PubMedCrossRef
62.
Zurück zum Zitat Pratt, P.C. 1978. Pathology of adult respiratory distress syndrome. Monographs in Pathology 19: 43–57.PubMed Pratt, P.C. 1978. Pathology of adult respiratory distress syndrome. Monographs in Pathology 19: 43–57.PubMed
63.
Zurück zum Zitat Wheeler, D.S., and H.R. Wong. 2007. Heat shock response and acute lung injury. Free Radical Biology and Medicine 42 (1): 1–14.PubMedCrossRef Wheeler, D.S., and H.R. Wong. 2007. Heat shock response and acute lung injury. Free Radical Biology and Medicine 42 (1): 1–14.PubMedCrossRef
64.
Zurück zum Zitat Nouh, M.A., et al. 2011. Cathepsin B: A potential prognostic marker for inflammatory breast cancer. Journal of Translational Medicine 9 (1): 1–8.PubMedPubMedCentralCrossRef Nouh, M.A., et al. 2011. Cathepsin B: A potential prognostic marker for inflammatory breast cancer. Journal of Translational Medicine 9 (1): 1–8.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Laskin, D.L., R. Malaviya, and J.D. Laskin. 2019. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants. Toxicological Sciences 168 (2): 287–301.PubMedCrossRef Laskin, D.L., R. Malaviya, and J.D. Laskin. 2019. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants. Toxicological Sciences 168 (2): 287–301.PubMedCrossRef
66.
Zurück zum Zitat Minutti, C.M., et al. 2016. Surfactant protein A prevents IFN-γ/IFN-γ receptor interaction and attenuates classical activation of human alveolar macrophages. The Journal of Immunology 197 (2): 590–598.PubMedCrossRef Minutti, C.M., et al. 2016. Surfactant protein A prevents IFN-γ/IFN-γ receptor interaction and attenuates classical activation of human alveolar macrophages. The Journal of Immunology 197 (2): 590–598.PubMedCrossRef
67.
Zurück zum Zitat Wan, S., and H. Sun. 2019. Glucagon‑like peptide‑1 modulates RAW264. 7 macrophage polarization by interfering with the JNK/STAT3 signaling pathway. Experimental and Therapeutic Medicine 17 (5): 3573–3579. Wan, S., and H. Sun. 2019. Glucagon‑like peptide‑1 modulates RAW264. 7 macrophage polarization by interfering with the JNK/STAT3 signaling pathway. Experimental and Therapeutic Medicine 17 (5): 3573–3579.
68.
Zurück zum Zitat Liu, Y., et al. 2008. Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo. The Journal of Immunology 180 (9): 6270–6278.PubMedCrossRef Liu, Y., et al. 2008. Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo. The Journal of Immunology 180 (9): 6270–6278.PubMedCrossRef
69.
Zurück zum Zitat Sun, K., et al. 2016. IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro. World Journal of Gastroenterology 22 (42): 9368.PubMedPubMedCentralCrossRef Sun, K., et al. 2016. IRF5 regulates lung macrophages M2 polarization during severe acute pancreatitis in vitro. World Journal of Gastroenterology 22 (42): 9368.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Ohmoto, K., et al. 2001. Design and synthesis of new orally active inhibitors of human neutrophil elastase. Bioorganic & Medicinal Chemistry 9 (5): 1307–1323.CrossRef Ohmoto, K., et al. 2001. Design and synthesis of new orally active inhibitors of human neutrophil elastase. Bioorganic & Medicinal Chemistry 9 (5): 1307–1323.CrossRef
71.
Zurück zum Zitat Stein, M., et al. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. The Journal of Experimental Medicine 176 (1): 287–292.PubMedCrossRef Stein, M., et al. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. The Journal of Experimental Medicine 176 (1): 287–292.PubMedCrossRef
72.
Zurück zum Zitat Herold, S., K. Mayer, and J. Lohmeyer. 2011. Acute lung injury: How macrophages orchestrate resolution of inflammation and tissue repair. Frontiers in Immunology 2: 65.PubMedPubMedCentralCrossRef Herold, S., K. Mayer, and J. Lohmeyer. 2011. Acute lung injury: How macrophages orchestrate resolution of inflammation and tissue repair. Frontiers in Immunology 2: 65.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Akilov, O.E., et al. 2011. Vaccination with photodynamic therapy-treated macrophages induces highly suppressive T-regulatory cells. Photodermatology, Photoimmunology & Photomedicine 27 (2): 97–107.CrossRef Akilov, O.E., et al. 2011. Vaccination with photodynamic therapy-treated macrophages induces highly suppressive T-regulatory cells. Photodermatology, Photoimmunology & Photomedicine 27 (2): 97–107.CrossRef
74.
Zurück zum Zitat Tu, G.-W., et al. 2017. Glucocorticoid attenuates acute lung injury through induction of type 2 macrophage. Journal of Translational Medicine 15 (1): 1–11.CrossRef Tu, G.-W., et al. 2017. Glucocorticoid attenuates acute lung injury through induction of type 2 macrophage. Journal of Translational Medicine 15 (1): 1–11.CrossRef
75.
Zurück zum Zitat Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32 (5): 593–604.PubMedCrossRef Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32 (5): 593–604.PubMedCrossRef
76.
Zurück zum Zitat Strieter, R.M. 2008. What differentiates normal lung repair and fibrosis? Inflammation, resolution of repair, and fibrosis. Proceedings of the American Thoracic Society 5 (3): 305–310.PubMedPubMedCentralCrossRef Strieter, R.M. 2008. What differentiates normal lung repair and fibrosis? Inflammation, resolution of repair, and fibrosis. Proceedings of the American Thoracic Society 5 (3): 305–310.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Schwartz, M.D., et al. 1996. Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Critical Care Medicine 24 (8): 1285–1292.PubMedCrossRef Schwartz, M.D., et al. 1996. Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Critical Care Medicine 24 (8): 1285–1292.PubMedCrossRef
78.
Zurück zum Zitat Baeuerle, P.A., and T. Henkel. 1994. Function and activation of NF-kappaB in the immune system. Annual Review of Immunology 12 (1): 141–179.PubMedCrossRef Baeuerle, P.A., and T. Henkel. 1994. Function and activation of NF-kappaB in the immune system. Annual Review of Immunology 12 (1): 141–179.PubMedCrossRef
79.
Zurück zum Zitat Collart, M.A., P. Baeuerle, and P. Vassalli. 1990. Regulation of tumor necrosis factor alpha transcription in macrophages: Involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Molecular and Cellular Biology 10 (4): 1498–1506.PubMedPubMedCentral Collart, M.A., P. Baeuerle, and P. Vassalli. 1990. Regulation of tumor necrosis factor alpha transcription in macrophages: Involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Molecular and Cellular Biology 10 (4): 1498–1506.PubMedPubMedCentral
80.
Zurück zum Zitat Niemiec, S.M., et al. 2021. Cerium oxide nanoparticle delivery of microRNA-146a for local treatment of acute lung injury. Nanomedicine: Nanotechnology, Biology and Medicine 34: 102388. Niemiec, S.M., et al. 2021. Cerium oxide nanoparticle delivery of microRNA-146a for local treatment of acute lung injury. Nanomedicine: Nanotechnology, Biology and Medicine 34: 102388.
81.
Zurück zum Zitat Ma, J.S., et al. 2010. Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-κB and IFN-β/STAT1 pathways in RAW264. 7 cells. Nitric Oxide 23 (3): 214–219. Ma, J.S., et al. 2010. Gold nanoparticles attenuate LPS-induced NO production through the inhibition of NF-κB and IFN-β/STAT1 pathways in RAW264. 7 cells. Nitric Oxide 23 (3): 214–219.
82.
Zurück zum Zitat dos Santos Haupenthal, D.P., et al. 2020. Effects of treatment with gold nanoparticles in a model of acute pulmonary inflammation induced by lipopolysaccharide. Journal of Biomedical Materials Research Part A 108 (1): 103–115.PubMedCrossRef dos Santos Haupenthal, D.P., et al. 2020. Effects of treatment with gold nanoparticles in a model of acute pulmonary inflammation induced by lipopolysaccharide. Journal of Biomedical Materials Research Part A 108 (1): 103–115.PubMedCrossRef
83.
Zurück zum Zitat Wang, L., et al. 2020. Manipulation of macrophage polarization by peptide-coated gold nanoparticles and its protective effects on acute lung injury. Journal of Nanobiotechnology 18 (1): 1–16.CrossRef Wang, L., et al. 2020. Manipulation of macrophage polarization by peptide-coated gold nanoparticles and its protective effects on acute lung injury. Journal of Nanobiotechnology 18 (1): 1–16.CrossRef
84.
Zurück zum Zitat Gao, W., et al. 2019. Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury. Acta Biomaterialia 85: 203–217.PubMedCrossRef Gao, W., et al. 2019. Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury. Acta Biomaterialia 85: 203–217.PubMedCrossRef
85.
Zurück zum Zitat Li, N., et al. 2017. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury. Drug Delivery 24 (1): 1770–1781.PubMedPubMedCentralCrossRef Li, N., et al. 2017. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury. Drug Delivery 24 (1): 1770–1781.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Weng, D., et al. 2021. Development and assessment of the efficacy and safety of human lung-targeting liposomal methylprednisolone crosslinked with nanobody. Drug Delivery 28 (1): 1419–1431.PubMedPubMedCentralCrossRef Weng, D., et al. 2021. Development and assessment of the efficacy and safety of human lung-targeting liposomal methylprednisolone crosslinked with nanobody. Drug Delivery 28 (1): 1419–1431.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Wijagkanalan, W., et al. 2008. Enhanced anti-inflammation of inhaled dexamethasone palmitate using mannosylated liposomes in an endotoxin-induced lung inflammation model. Molecular Pharmacology 74 (5): 1183–1192.PubMedCrossRef Wijagkanalan, W., et al. 2008. Enhanced anti-inflammation of inhaled dexamethasone palmitate using mannosylated liposomes in an endotoxin-induced lung inflammation model. Molecular Pharmacology 74 (5): 1183–1192.PubMedCrossRef
88.
Zurück zum Zitat Spence, S., et al. 2015. Targeting Siglecs with a sialic acid–decorated nanoparticle abrogates inflammation. Science Translational Medicine 7 (303): 303ra140–303ra140. Spence, S., et al. 2015. Targeting Siglecs with a sialic acid–decorated nanoparticle abrogates inflammation. Science Translational Medicine 7 (303): 303ra140–303ra140.
89.
Zurück zum Zitat Ding, Y., et al. 2021. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. Journal of Controlled Release 341: 702–715. Ding, Y., et al. 2021. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. Journal of Controlled Release 341: 702–715.
90.
Zurück zum Zitat Chang, H., et al. 2005. Inhibition of inflammatory responses by FC-77, a perfluorochemical, in lipopolysaccharide-treated RAW 264.7 macrophages. Intensive Care Medicine 31 (7): 977–984. Chang, H., et al. 2005. Inhibition of inflammatory responses by FC-77, a perfluorochemical, in lipopolysaccharide-treated RAW 264.7 macrophages. Intensive Care Medicine 31 (7): 977–984.
91.
Zurück zum Zitat Hou, S., et al. 2014. Therapeutic effect of intravenous infusion of perfluorocarbon emulsion on LPS-induced acute lung injury in rats. PLoS ONE 9 (1): e87826.PubMedPubMedCentralCrossRef Hou, S., et al. 2014. Therapeutic effect of intravenous infusion of perfluorocarbon emulsion on LPS-induced acute lung injury in rats. PLoS ONE 9 (1): e87826.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Wang, Y., et al. 2019. Treatment of acute lung injury and early-and late-stage pulmonary fibrosis with combination emulsion siRNA polyplexes. Journal of Controlled Release 314: 12–24.PubMedCrossRef Wang, Y., et al. 2019. Treatment of acute lung injury and early-and late-stage pulmonary fibrosis with combination emulsion siRNA polyplexes. Journal of Controlled Release 314: 12–24.PubMedCrossRef
93.
Zurück zum Zitat de Sá Coutinho, D., et al. 2020. Pequi (Caryocar brasiliense Cambess)-Loaded Nanoemulsion, Orally Delivered, Modulates Inflammation in LPS-Induced Acute Lung Injury in Mice. Pharmaceutics 12 (11): 1075.PubMedCentralCrossRef de Sá Coutinho, D., et al. 2020. Pequi (Caryocar brasiliense Cambess)-Loaded Nanoemulsion, Orally Delivered, Modulates Inflammation in LPS-Induced Acute Lung Injury in Mice. Pharmaceutics 12 (11): 1075.PubMedCentralCrossRef
94.
Zurück zum Zitat Jin, F., et al. 2018. Sialic acid-functionalized PEG–PLGA microspheres loading mitochondrial-targeting-modified curcumin for acute lung injury therapy. Molecular pharmaceutics 16 (1): 71–85.PubMedCrossRef Jin, F., et al. 2018. Sialic acid-functionalized PEG–PLGA microspheres loading mitochondrial-targeting-modified curcumin for acute lung injury therapy. Molecular pharmaceutics 16 (1): 71–85.PubMedCrossRef
95.
Zurück zum Zitat Kim, G., et al. 2019. Combined delivery of curcumin and the heme oxygenase-1 gene using cholesterol-conjugated polyamidoamine for anti-inflammatory therapy in acute lung injury. Phytomedicine 56: 165–174.PubMedCrossRef Kim, G., et al. 2019. Combined delivery of curcumin and the heme oxygenase-1 gene using cholesterol-conjugated polyamidoamine for anti-inflammatory therapy in acute lung injury. Phytomedicine 56: 165–174.PubMedCrossRef
96.
Zurück zum Zitat Kim, G., et al. 2018. Self-assembled polymeric micelles for combined delivery of anti-inflammatory gene and drug to the lungs by inhalation. Nanoscale 10 (18): 8503–8514.PubMedCrossRef Kim, G., et al. 2018. Self-assembled polymeric micelles for combined delivery of anti-inflammatory gene and drug to the lungs by inhalation. Nanoscale 10 (18): 8503–8514.PubMedCrossRef
97.
Zurück zum Zitat de Oliveira, M.T.P., et al. 2019. Orally delivered resveratrol-loaded lipid-core nanocapsules ameliorate LPS-induced acute lung injury via the ERK and PI3K/Akt pathways. International Journal of Nanomedicine 14: 5215.PubMedPubMedCentralCrossRef de Oliveira, M.T.P., et al. 2019. Orally delivered resveratrol-loaded lipid-core nanocapsules ameliorate LPS-induced acute lung injury via the ERK and PI3K/Akt pathways. International Journal of Nanomedicine 14: 5215.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Barton, G.M. 2008. A calculated response: Control of inflammation by the innate immune system. The Journal of Clinical Investigation 118 (2): 413–420.PubMedPubMedCentralCrossRef Barton, G.M. 2008. A calculated response: Control of inflammation by the innate immune system. The Journal of Clinical Investigation 118 (2): 413–420.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Williams, A.E., and R.C. Chambers. 2014. The mercurial nature of neutrophils: Still an enigma in ARDS? American Journal of Physiology-Lung Cellular and Molecular Physiology 306 (3): L217–L230.PubMedCrossRef Williams, A.E., and R.C. Chambers. 2014. The mercurial nature of neutrophils: Still an enigma in ARDS? American Journal of Physiology-Lung Cellular and Molecular Physiology 306 (3): L217–L230.PubMedCrossRef
100.
Zurück zum Zitat Zhang, C.Y., et al. 2019. pH-responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/injury. ACS Applied Materials & Interfaces 11 (18): 16380–16390.CrossRef Zhang, C.Y., et al. 2019. pH-responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/injury. ACS Applied Materials & Interfaces 11 (18): 16380–16390.CrossRef
101.
Zurück zum Zitat Li, S.-J., et al. 2017. Targeting delivery of simvastatin using ICAM-1 antibody-conjugated nanostructured lipid carriers for acute lung injury therapy. Drug Delivery 24 (1): 402–413.PubMedPubMedCentralCrossRef Li, S.-J., et al. 2017. Targeting delivery of simvastatin using ICAM-1 antibody-conjugated nanostructured lipid carriers for acute lung injury therapy. Drug Delivery 24 (1): 402–413.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Sadikot, R.T., and I. Rubinstein. 2009. Long-acting, multi-targeted nanomedicine: Addressing unmet medical need in acute lung injury. Journal of Biomedical Nanotechnology 5 (6): 614–619.PubMedCrossRef Sadikot, R.T., and I. Rubinstein. 2009. Long-acting, multi-targeted nanomedicine: Addressing unmet medical need in acute lung injury. Journal of Biomedical Nanotechnology 5 (6): 614–619.PubMedCrossRef
103.
Zurück zum Zitat Lim, S.B., et al. 2011. A novel peptide nanomedicine against acute lung injury: GLP-1 in phospholipid micelles. Pharmaceutical Research 28 (3): 662–672.PubMedCrossRef Lim, S.B., et al. 2011. A novel peptide nanomedicine against acute lung injury: GLP-1 in phospholipid micelles. Pharmaceutical Research 28 (3): 662–672.PubMedCrossRef
104.
Zurück zum Zitat Carpenter, T.C., et al. 2012. Eph-A2 promotes permeability and inflammatory responses to bleomycin-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 46 (1): 40–47.PubMedPubMedCentralCrossRef Carpenter, T.C., et al. 2012. Eph-A2 promotes permeability and inflammatory responses to bleomycin-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 46 (1): 40–47.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Patil, M.A., et al. 2018. Targeted delivery of YSA-functionalized and non-functionalized polymeric nanoparticles to injured pulmonary vasculature. Artificial Cells, Nanomedicine, and Biotechnology 46 (sup3): S1059–S1066.PubMedPubMedCentralCrossRef Patil, M.A., et al. 2018. Targeted delivery of YSA-functionalized and non-functionalized polymeric nanoparticles to injured pulmonary vasculature. Artificial Cells, Nanomedicine, and Biotechnology 46 (sup3): S1059–S1066.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Hofmann-Amtenbrink, M., D.W. Grainger, and H. Hofmann. 2015. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine: Nanotechnology, Biology and Medicine 11 (7): 1689–1694. Hofmann-Amtenbrink, M., D.W. Grainger, and H. Hofmann. 2015. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. Nanomedicine: Nanotechnology, Biology and Medicine 11 (7): 1689–1694.
107.
108.
109.
Zurück zum Zitat Chen, K.-H., et al. 2015. Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific. Nanoscale 7 (38): 15863–15872.PubMedCrossRef Chen, K.-H., et al. 2015. Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific. Nanoscale 7 (38): 15863–15872.PubMedCrossRef
110.
Zurück zum Zitat Huang, Z., et al. 2020. Relationship between particle size and lung retention time of intact solid lipid nanoparticle suspensions after pulmonary delivery. Journal of Controlled Release 325: 206–222.PubMedCrossRef Huang, Z., et al. 2020. Relationship between particle size and lung retention time of intact solid lipid nanoparticle suspensions after pulmonary delivery. Journal of Controlled Release 325: 206–222.PubMedCrossRef
111.
Zurück zum Zitat Kreyling, W.G., et al. 2014. Air–blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano 8 (1): 222–233.PubMedCrossRef Kreyling, W.G., et al. 2014. Air–blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano 8 (1): 222–233.PubMedCrossRef
112.
Zurück zum Zitat Anderson, D.S., et al. 2015. Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition. Nanotoxicology 9 (5): 591–602.PubMedCrossRef Anderson, D.S., et al. 2015. Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition. Nanotoxicology 9 (5): 591–602.PubMedCrossRef
113.
Zurück zum Zitat Ochs, M., et al. 2004. The number of alveoli in the human lung. American Journal of Respiratory and Critical Care Medicine 169 (1): 120–124.PubMedCrossRef Ochs, M., et al. 2004. The number of alveoli in the human lung. American Journal of Respiratory and Critical Care Medicine 169 (1): 120–124.PubMedCrossRef
115.
Zurück zum Zitat Shang, L., K. Nienhaus, and G.U. Nienhaus. 2014. Engineered nanoparticles interacting with cells: Size matters. Journal of Nanobiotechnology 12 (1): 1–11.CrossRef Shang, L., K. Nienhaus, and G.U. Nienhaus. 2014. Engineered nanoparticles interacting with cells: Size matters. Journal of Nanobiotechnology 12 (1): 1–11.CrossRef
116.
Zurück zum Zitat Albanese, A., P.S. Tang, and W.C.W. Chan. 2012. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annual Review of Biomedical Engineering 14 (1): 1–16.PubMedCrossRef Albanese, A., P.S. Tang, and W.C.W. Chan. 2012. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annual Review of Biomedical Engineering 14 (1): 1–16.PubMedCrossRef
118.
Zurück zum Zitat Liu, X., et al. 2013. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir: the ACS Journal of Surfaces and Colloids 29 (29): 9138–9148. Liu, X., et al. 2013. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir: the ACS Journal of Surfaces and Colloids 29 (29): 9138–9148.
119.
Zurück zum Zitat Sung, J.C., B.L. Pulliam, and D.A. Edwards. 2007. Nanoparticles for drug delivery to the lungs. Trends in Biotechnology 25 (12): 563–570.PubMedCrossRef Sung, J.C., B.L. Pulliam, and D.A. Edwards. 2007. Nanoparticles for drug delivery to the lungs. Trends in Biotechnology 25 (12): 563–570.PubMedCrossRef
120.
Zurück zum Zitat Thorley, A.J., et al. 2014. Critical Determinants of Uptake and Translocation of Nanoparticles by the Human Pulmonary Alveolar Epithelium. ACS Nano 8 (11): 11778–11789.PubMedPubMedCentralCrossRef Thorley, A.J., et al. 2014. Critical Determinants of Uptake and Translocation of Nanoparticles by the Human Pulmonary Alveolar Epithelium. ACS Nano 8 (11): 11778–11789.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Mangal, S., et al. 2017. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacologica Sinica 38 (6): 782–797.PubMedPubMedCentralCrossRef Mangal, S., et al. 2017. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacologica Sinica 38 (6): 782–797.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Gratton, S.E.A., et al. 2008. The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences 105 (33): 11613–11618.CrossRef Gratton, S.E.A., et al. 2008. The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences 105 (33): 11613–11618.CrossRef
123.
Zurück zum Zitat Liu, Y., et al. 2012. The shape of things to come: Importance of design in nanotechnology for drug delivery. Therapeutic Delivery 3 (2): 181–194.PubMedCrossRef Liu, Y., et al. 2012. The shape of things to come: Importance of design in nanotechnology for drug delivery. Therapeutic Delivery 3 (2): 181–194.PubMedCrossRef
124.
Zurück zum Zitat Liu, X., et al. 2016. Size dependent cellular uptake of rod-like bionanoparticles with different aspect ratios. Scientific Reports 6 (1): 1–10. Liu, X., et al. 2016. Size dependent cellular uptake of rod-like bionanoparticles with different aspect ratios. Scientific Reports 6 (1): 1–10.
125.
Zurück zum Zitat Lynch, I., and K.A. Dawson. 2008. Protein-nanoparticle interactions. Nano Today 3 (1): 40–47.CrossRef Lynch, I., and K.A. Dawson. 2008. Protein-nanoparticle interactions. Nano Today 3 (1): 40–47.CrossRef
126.
Zurück zum Zitat Walkey, C.D., et al. 2012. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. Journal of the American Chemical Society 134 (4): 2139–2147.PubMedCrossRef Walkey, C.D., et al. 2012. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. Journal of the American Chemical Society 134 (4): 2139–2147.PubMedCrossRef
127.
Zurück zum Zitat Shann, S.Y., et al. 2012. Size-and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. International Journal of Nanomedicine 7: 799. Shann, S.Y., et al. 2012. Size-and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. International Journal of Nanomedicine 7: 799.
128.
Zurück zum Zitat Jones, S.W., et al. 2013. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. The Journal of Clinical Investigation 123 (7): 3061–3073.PubMedPubMedCentralCrossRef Jones, S.W., et al. 2013. Nanoparticle clearance is governed by Th1/Th2 immunity and strain background. The Journal of Clinical Investigation 123 (7): 3061–3073.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Rattan, R., et al. 2017. Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting. Bioorganic & Medicinal Chemistry 25 (16): 4487–4496.CrossRef Rattan, R., et al. 2017. Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting. Bioorganic & Medicinal Chemistry 25 (16): 4487–4496.CrossRef
130.
Zurück zum Zitat Mantovani, A., et al. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology 25 (12): 677–686.PubMedCrossRef Mantovani, A., et al. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology 25 (12): 677–686.PubMedCrossRef
131.
Zurück zum Zitat Song, B., et al. 2020. Folate modified long circulating nano-emulsion as a promising approach for improving the efficiency of chemotherapy drugs in cancer treatment. Pharmaceutical Research 37 (12): 1–12.CrossRef Song, B., et al. 2020. Folate modified long circulating nano-emulsion as a promising approach for improving the efficiency of chemotherapy drugs in cancer treatment. Pharmaceutical Research 37 (12): 1–12.CrossRef
132.
Zurück zum Zitat Hattori, Y., M. Sakaguchi, and Y. Maitani. 2006. Folate-linked lipid-based nanoparticles deliver a NFκB decoy into activated murine macrophage-like RAW264.7 cells. Biological and Pharmaceutical Bulletin 29 (7): 1516–1520.PubMedCrossRef Hattori, Y., M. Sakaguchi, and Y. Maitani. 2006. Folate-linked lipid-based nanoparticles deliver a NFκB decoy into activated murine macrophage-like RAW264.7 cells. Biological and Pharmaceutical Bulletin 29 (7): 1516–1520.PubMedCrossRef
133.
Zurück zum Zitat Jahandideh, A., et al. 2020. Folate Receptor β–Targeted PET Imaging of Macrophages in Autoimmune Myocarditis. Journal of Nuclear Medicine 61 (11): 1643–1649.PubMedCrossRef Jahandideh, A., et al. 2020. Folate Receptor β–Targeted PET Imaging of Macrophages in Autoimmune Myocarditis. Journal of Nuclear Medicine 61 (11): 1643–1649.PubMedCrossRef
134.
Zurück zum Zitat Costa, A., B. Sarmento, and V. Seabra. 2018. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. European Journal of Pharmaceutical Sciences 114: 103–113.PubMedCrossRef Costa, A., B. Sarmento, and V. Seabra. 2018. Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. European Journal of Pharmaceutical Sciences 114: 103–113.PubMedCrossRef
135.
Zurück zum Zitat Qie, Y., et al. 2016. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Scientific Reports 6 (1): 1–11. Qie, Y., et al. 2016. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Scientific Reports 6 (1): 1–11.
136.
Zurück zum Zitat Brown, E.J., and W.A. Frazier. 2001. Integrin-associated protein (CD47) and its ligands. Trends in Cell Biology 11 (3): 130–135.PubMedCrossRef Brown, E.J., and W.A. Frazier. 2001. Integrin-associated protein (CD47) and its ligands. Trends in Cell Biology 11 (3): 130–135.PubMedCrossRef
137.
Zurück zum Zitat Cedervall, T., et al. 2007. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences 104 (7): 2050–2055.CrossRef Cedervall, T., et al. 2007. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences 104 (7): 2050–2055.CrossRef
138.
Zurück zum Zitat Wilson, J.G., and C.S. Calfee. 2020. ARDS subphenotypes: Understanding a heterogeneous syndrome. Annual Update in Intensive Care and Emergency Medicine 2020: 67–79.CrossRef Wilson, J.G., and C.S. Calfee. 2020. ARDS subphenotypes: Understanding a heterogeneous syndrome. Annual Update in Intensive Care and Emergency Medicine 2020: 67–79.CrossRef
139.
140.
Zurück zum Zitat Reilly, J.P., C.S. Calfee, and J.D. Christie. 2019. Acute respiratory distress syndrome phenotypes. In Seminars in respiratory and critical care medicine. Thieme Medical Publishers. Reilly, J.P., C.S. Calfee, and J.D. Christie. 2019. Acute respiratory distress syndrome phenotypes. In Seminars in respiratory and critical care medicine. Thieme Medical Publishers.
141.
Zurück zum Zitat Famous, K.R., et al. 2017. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. American Journal of Respiratory and Critical Care Medicine 195 (3): 331–338.PubMedPubMedCentralCrossRef Famous, K.R., et al. 2017. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. American Journal of Respiratory and Critical Care Medicine 195 (3): 331–338.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Calfee, C.S., et al. 2018. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: Secondary analysis of a randomised controlled trial. The Lancet Respiratory Medicine 6 (9): 691–698.PubMedPubMedCentralCrossRef Calfee, C.S., et al. 2018. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: Secondary analysis of a randomised controlled trial. The Lancet Respiratory Medicine 6 (9): 691–698.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Wong, H.R., et al. 2016. Combining prognostic and predictive enrichment strategies to identify children with septic shock responsive to corticosteroids. Critical Care Medicine 44 (10): e1000.PubMedCrossRef Wong, H.R., et al. 2016. Combining prognostic and predictive enrichment strategies to identify children with septic shock responsive to corticosteroids. Critical Care Medicine 44 (10): e1000.PubMedCrossRef
144.
Zurück zum Zitat Liao, K.-M., et al. 2009. Timing of acute respiratory distress syndrome onset is related to patient outcome. Journal of the Formosan Medical Association 108 (9): 694–703.PubMedCrossRef Liao, K.-M., et al. 2009. Timing of acute respiratory distress syndrome onset is related to patient outcome. Journal of the Formosan Medical Association 108 (9): 694–703.PubMedCrossRef
145.
Zurück zum Zitat Schenck, E.J., et al. 2019. Rapidly improving ARDS in therapeutic randomized controlled trials. Chest 155 (3): 474–482.PubMedCrossRef Schenck, E.J., et al. 2019. Rapidly improving ARDS in therapeutic randomized controlled trials. Chest 155 (3): 474–482.PubMedCrossRef
146.
Zurück zum Zitat Zhang, R., et al. 2017. Late-onset moderate to severe acute respiratory distress syndrome is associated with shorter survival and higher mortality: A two-stage association study. Intensive Care Medicine 43 (3): 399–407.PubMedCrossRef Zhang, R., et al. 2017. Late-onset moderate to severe acute respiratory distress syndrome is associated with shorter survival and higher mortality: A two-stage association study. Intensive Care Medicine 43 (3): 399–407.PubMedCrossRef
147.
Zurück zum Zitat Zhao, H., et al. 2018. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale 10 (15): 6981–6991.PubMedCrossRef Zhao, H., et al. 2018. Polydopamine nanoparticles for the treatment of acute inflammation-induced injury. Nanoscale 10 (15): 6981–6991.PubMedCrossRef
Metadaten
Titel
Macrophage-Targeted Nanomedicines for ARDS/ALI: Promise and Potential
verfasst von
Riddhi Vichare
Jelena M. Janjic
Publikationsdatum
31.05.2022
Verlag
Springer US
Schlagwort
COVID-19
Erschienen in
Inflammation / Ausgabe 6/2022
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01692-3

Weitere Artikel der Ausgabe 6/2022

Inflammation 6/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.