Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2022

12.01.2022 | COVID-19 | Non-Thematic Review Zur Zeit gratis

Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective

verfasst von: David G. Menter, Vahid Afshar-Kharghan, John Paul Shen, Stephanie L. Martch, Anirban Maitra, Scott Kopetz, Kenneth V. Honn, Anil K. Sood

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Abstract

We have established considerable expertise in studying the role of platelets in cancer biology. From this expertise, we were keen to recognize the numerous venous-, arterial-, microvascular-, and macrovascular thrombotic events and immunologic disorders are caused by severe, acute-respiratory-syndrome coronavirus 2 (SARS-CoV-2) infections. With this offering, we explore the evolutionary connections that place platelets at the center of hemostasis, immunity, and adaptive phylogeny. Coevolutionary changes have also occurred in vertebrate viruses and their vertebrate hosts that reflect their respective evolutionary interactions. As mammals adapted from aquatic to terrestrial life and the heavy blood loss associated with placentalization-based live birth, platelets evolved phylogenetically from thrombocytes toward higher megakaryocyte-blebbing-based production rates and the lack of nuclei. With no nuclei and robust RNA synthesis, this adaptation may have influenced viral replication to become less efficient after virus particles are engulfed. Human platelets express numerous receptors that bind viral particles, which developed from archetypal origins to initiate aggregation and exocytic-release of thrombo-, immuno-, angiogenic-, growth-, and repair-stimulatory granule contents. Whether by direct, evolutionary, selective pressure, or not, these responses may help to contain virus spread, attract immune cells for eradication, and stimulate angiogenesis, growth, and wound repair after viral damage. Because mammalian and marsupial platelets became smaller and more plate-like their biophysical properties improved in function, which facilitated distribution near vessel walls in fluid-shear fields. This adaptation increased the probability that platelets could then interact with and engulf shedding virus particles. Platelets also generate circulating microvesicles that increase membrane surface-area encounters and mark viral targets. In order to match virus-production rates, billions of platelets are generated and turned over per day to continually provide active defenses and adaptation to suppress the spectrum of evolving threats like SARS-CoV-2.
Literatur
1.
Zurück zum Zitat Menter, D. G., Hatfield, J. S., Harkins, C., Sloane, B. F., Taylor, J. D., Crissman, J. D., et al. (1987). Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clinical and Experimental Metastasis, 5(1), 65–78.CrossRef Menter, D. G., Hatfield, J. S., Harkins, C., Sloane, B. F., Taylor, J. D., Crissman, J. D., et al. (1987). Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clinical and Experimental Metastasis, 5(1), 65–78.CrossRef
2.
Zurück zum Zitat Menter, D. G., Harkins, C., Onoda, J., Riorden, W., Sloane, B. F., Taylor, J. D., et al. (1987). Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: An ultrastructural study. Invasion and Metastasis, 7(2), 109–128.PubMed Menter, D. G., Harkins, C., Onoda, J., Riorden, W., Sloane, B. F., Taylor, J. D., et al. (1987). Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: An ultrastructural study. Invasion and Metastasis, 7(2), 109–128.PubMed
3.
Zurück zum Zitat Honn, K. V., Onoda, J. M., Menter, D. G., Cavanaugh, P. G., Taylor, J. D., Crissman, J. D., et al. (1986). Possible strategies for antimetastastic therapy. Progress in Clinical and Biological Research, 212, 217–249.PubMed Honn, K. V., Onoda, J. M., Menter, D. G., Cavanaugh, P. G., Taylor, J. D., Crissman, J. D., et al. (1986). Possible strategies for antimetastastic therapy. Progress in Clinical and Biological Research, 212, 217–249.PubMed
4.
Zurück zum Zitat Haemmerle, M., Stone, R. L., Menter, D. G., Afshar-Kharghan, V., & Sood, A. K. (2018). The platelet lifeline to cancer: Challenges and opportunities. Cancer Cell, 33(6), 965–983.PubMedPubMedCentralCrossRef Haemmerle, M., Stone, R. L., Menter, D. G., Afshar-Kharghan, V., & Sood, A. K. (2018). The platelet lifeline to cancer: Challenges and opportunities. Cancer Cell, 33(6), 965–983.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Menter, D. G., Kopetz, S., Hawk, E., Sood, A. K., Loree, J. M., Gresele, P., et al. (2017). Platelet “first responders” in wound response, cancer, and metastasis. Cancer and Metastasis Reviews, 36(2), 199–213.PubMedCrossRef Menter, D. G., Kopetz, S., Hawk, E., Sood, A. K., Loree, J. M., Gresele, P., et al. (2017). Platelet “first responders” in wound response, cancer, and metastasis. Cancer and Metastasis Reviews, 36(2), 199–213.PubMedCrossRef
6.
Zurück zum Zitat Hu, Q., Hisamatsu, T., Haemmerle, M., Cho, M. S., Pradeep, S., Rupaimoole, R., et al. (2017). Role of platelet-derived tgfbeta1 in the progression of ovarian cancer. Clinical Cancer Research, 23(18), 5611–5621.PubMedPubMedCentralCrossRef Hu, Q., Hisamatsu, T., Haemmerle, M., Cho, M. S., Pradeep, S., Rupaimoole, R., et al. (2017). Role of platelet-derived tgfbeta1 in the progression of ovarian cancer. Clinical Cancer Research, 23(18), 5611–5621.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Cho, M. S., Noh, K., Haemmerle, M., Li, D., Park, H., Hu, Q., et al. (2017). Role of ADP receptors on platelets in the growth of ovarian cancer. Blood, 130(10), 1235–1242.PubMedPubMedCentralCrossRef Cho, M. S., Noh, K., Haemmerle, M., Li, D., Park, H., Hu, Q., et al. (2017). Role of ADP receptors on platelets in the growth of ovarian cancer. Blood, 130(10), 1235–1242.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Haemmerle, M., Bottsford-Miller, J., Pradeep, S., Taylor, M. L., Choi, H. J., Hansen, J. M., et al. (2016). FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. The Journal of Clinical Investigation, 126(5), 1885–1896.PubMedPubMedCentralCrossRef Haemmerle, M., Bottsford-Miller, J., Pradeep, S., Taylor, M. L., Choi, H. J., Hansen, J. M., et al. (2016). FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. The Journal of Clinical Investigation, 126(5), 1885–1896.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: A casual or causal relationship: Revisited. Cancer and Metastasis Reviews, 33(1), 231–269.PubMedCrossRef Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: A casual or causal relationship: Revisited. Cancer and Metastasis Reviews, 33(1), 231–269.PubMedCrossRef
10.
Zurück zum Zitat Stone, R. L., Nick, A. M., McNeish, I. A., Balkwill, F., Han, H. D., Bottsford-Miller, J., et al. (2012). Paraneoplastic thrombocytosis in ovarian cancer. New England Journal of Medicine, 366(7), 610–618.CrossRef Stone, R. L., Nick, A. M., McNeish, I. A., Balkwill, F., Han, H. D., Bottsford-Miller, J., et al. (2012). Paraneoplastic thrombocytosis in ovarian cancer. New England Journal of Medicine, 366(7), 610–618.CrossRef
11.
Zurück zum Zitat Gasic, G. J., Boettiger, D., Catalfamo, J. L., Gasic, T. B., & Stewart, G. J. (1978). Aggregation of platelets and cell membrane vesiculation by rat cells transformed in vitro by Rous sarcoma virus. Cancer Research, 38(9), 2950–2955.PubMed Gasic, G. J., Boettiger, D., Catalfamo, J. L., Gasic, T. B., & Stewart, G. J. (1978). Aggregation of platelets and cell membrane vesiculation by rat cells transformed in vitro by Rous sarcoma virus. Cancer Research, 38(9), 2950–2955.PubMed
12.
Zurück zum Zitat Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Invest, 53(4), 470–478. Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Invest, 53(4), 470–478.
13.
Zurück zum Zitat Kazlauskas, D., Varsani, A., Koonin, E. V., & Krupovic, M. (2019). Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nature Communications, 10(1), 3425.PubMedPubMedCentralCrossRef Kazlauskas, D., Varsani, A., Koonin, E. V., & Krupovic, M. (2019). Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nature Communications, 10(1), 3425.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Koonin, E. V., Dolja, V. V., & Krupovic, M. (2015). Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology, 479–480, 2–25.PubMedCrossRef Koonin, E. V., Dolja, V. V., & Krupovic, M. (2015). Origins and evolution of viruses of eukaryotes: The ultimate modularity. Virology, 479–480, 2–25.PubMedCrossRef
15.
Zurück zum Zitat Wolf, Y. I., Kazlauskas, D., Iranzo, J., Lucia-Sanz, A., Kuhn, J. H., Krupovic, M., et al. (2018). Origins and Evolution of the Global RNA Virome. mBio, 9(6) Wolf, Y. I., Kazlauskas, D., Iranzo, J., Lucia-Sanz, A., Kuhn, J. H., Krupovic, M., et al. (2018). Origins and Evolution of the Global RNA Virome. mBio, 9(6)
16.
Zurück zum Zitat Shi, M., Lin, X. D., Chen, X., Tian, J. H., Chen, L. J., Li, K., et al. (2018). The evolutionary history of vertebrate RNA viruses. Nature, 556(7700), 197–202.PubMedCrossRef Shi, M., Lin, X. D., Chen, X., Tian, J. H., Chen, L. J., Li, K., et al. (2018). The evolutionary history of vertebrate RNA viruses. Nature, 556(7700), 197–202.PubMedCrossRef
17.
Zurück zum Zitat Emerman, M., & Malik, H. S. (2010). Paleovirology--modern consequences of ancient viruses. PLoS Biol, 8(2), e1000301. Emerman, M., & Malik, H. S. (2010). Paleovirology--modern consequences of ancient viruses. PLoS Biol, 8(2), e1000301.
18.
Zurück zum Zitat Zhang, Y. Z., Wu, W. C., Shi, M., & Holmes, E. C. (2018). The diversity, evolution and origins of vertebrate RNA viruses. Current Opinion in Virology, 31, 9–16.PubMedPubMedCentralCrossRef Zhang, Y. Z., Wu, W. C., Shi, M., & Holmes, E. C. (2018). The diversity, evolution and origins of vertebrate RNA viruses. Current Opinion in Virology, 31, 9–16.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Wang, J., Gong, Z., & Han, G. Z. (2019). Convergent co-option of the retroviral gag gene during the early evolution of mammals. J Virol, 93(14) Wang, J., Gong, Z., & Han, G. Z. (2019). Convergent co-option of the retroviral gag gene during the early evolution of mammals. J Virol, 93(14)
20.
Zurück zum Zitat Gu, H., Chu, D. K. W., Peiris, M., & Poon, L. L. M. (2020). Multivariate analyses of codon usage of SARS-CoV-2 and other betacoronaviruses. Virus Evol, 6(1), veaa032. Gu, H., Chu, D. K. W., Peiris, M., & Poon, L. L. M. (2020). Multivariate analyses of codon usage of SARS-CoV-2 and other betacoronaviruses. Virus Evol, 6(1), veaa032.
21.
Zurück zum Zitat Wong, G., Bi, Y. H., Wang, Q. H., Chen, X. W., Zhang, Z. G., & Yao, Y. G. (2020). Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): Why is this work important? Zoological Research, 41(3), 213–219.PubMedPubMedCentralCrossRef Wong, G., Bi, Y. H., Wang, Q. H., Chen, X. W., Zhang, Z. G., & Yao, Y. G. (2020). Zoonotic origins of human coronavirus 2019 (HCoV-19 / SARS-CoV-2): Why is this work important? Zoological Research, 41(3), 213–219.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Ye, Z. W., Yuan, S., Yuen, K. S., Fung, S. Y., Chan, C. P., & Jin, D. Y. (2020). Zoonotic origins of human coronaviruses. International Journal of Biological Sciences, 16(10), 1686–1697.PubMedPubMedCentralCrossRef Ye, Z. W., Yuan, S., Yuen, K. S., Fung, S. Y., Chan, C. P., & Jin, D. Y. (2020). Zoonotic origins of human coronaviruses. International Journal of Biological Sciences, 16(10), 1686–1697.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Hon, C. C., Lam, T. Y., Shi, Z. L., Drummond, A. J., Yip, C. W., Zeng, F., et al. (2008). Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. Journal of Virology, 82(4), 1819–1826.PubMedCrossRef Hon, C. C., Lam, T. Y., Shi, Z. L., Drummond, A. J., Yip, C. W., Zeng, F., et al. (2008). Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. Journal of Virology, 82(4), 1819–1826.PubMedCrossRef
24.
Zurück zum Zitat Drexler, J. F., Corman, V. M., & Drosten, C. (2014). Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Research, 101, 45–56.PubMedCrossRef Drexler, J. F., Corman, V. M., & Drosten, C. (2014). Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Research, 101, 45–56.PubMedCrossRef
25.
Zurück zum Zitat Brook, C. E., Boots, M., Chandran, K., Dobson, A. P., Drosten, C., Graham, A. L., et al. (2020). Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. Elife, 9 Brook, C. E., Boots, M., Chandran, K., Dobson, A. P., Drosten, C., Graham, A. L., et al. (2020). Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. Elife, 9
26.
Zurück zum Zitat Pavesi, A. (2020). New insights into the evolutionary features of viral overlapping genes by discriminant analysis. Virology, 546, 51–66.PubMedCrossRef Pavesi, A. (2020). New insights into the evolutionary features of viral overlapping genes by discriminant analysis. Virology, 546, 51–66.PubMedCrossRef
27.
Zurück zum Zitat Zhang, X., Tan, Y., Ling, Y., Lu, G., Liu, F., Yi, Z., et al. (2020). Viral and host factors related to the clinical outcome of COVID-19. Nature Zhang, X., Tan, Y., Ling, Y., Lu, G., Liu, F., Yi, Z., et al. (2020). Viral and host factors related to the clinical outcome of COVID-19. Nature
28.
Zurück zum Zitat Fauver, J. R., Petrone, M. E., Hodcroft, E. B., Shioda, K., Ehrlich, H. Y., Watts, A. G., et al. (2020). Coast-to-coast spread of SARS-CoV-2 during the early epidemic in the United States. Cell, 181(5), 990–996 e995. Fauver, J. R., Petrone, M. E., Hodcroft, E. B., Shioda, K., Ehrlich, H. Y., Watts, A. G., et al. (2020). Coast-to-coast spread of SARS-CoV-2 during the early epidemic in the United States. Cell, 181(5), 990–996 e995.
29.
Zurück zum Zitat Lu, J., du Plessis, L., Liu, Z., Hill, V., Kang, M., Lin, H., et al. (2020). Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell, 181(5), 997–1003 e1009. Lu, J., du Plessis, L., Liu, Z., Hill, V., Kang, M., Lin, H., et al. (2020). Genomic epidemiology of SARS-CoV-2 in Guangdong Province, China. Cell, 181(5), 997–1003 e1009.
30.
Zurück zum Zitat Vankadari, N. (2020). Overwhelming mutations or SNPs of SARS-CoV-2: A point of caution. Gene, 752, 144792. Vankadari, N. (2020). Overwhelming mutations or SNPs of SARS-CoV-2: A point of caution. Gene, 752, 144792.
31.
Zurück zum Zitat Lam, T. T. (2020). Tracking the genomic footprints of SARS-CoV-2 transmission. Trends Genet Lam, T. T. (2020). Tracking the genomic footprints of SARS-CoV-2 transmission. Trends Genet
32.
Zurück zum Zitat Li, X., Wang, W., Zhao, X., Zai, J., Zhao, Q., Li, Y., et al. (2020). Transmission dynamics and evolutionary history of 2019-nCoV. Journal of Medical Virology, 92(5), 501–511.PubMedPubMedCentralCrossRef Li, X., Wang, W., Zhao, X., Zai, J., Zhao, Q., Li, Y., et al. (2020). Transmission dynamics and evolutionary history of 2019-nCoV. Journal of Medical Virology, 92(5), 501–511.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Geoghegan, J. L., Duchene, S., & Holmes, E. C. (2017). Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog, 13(2), e1006215. Geoghegan, J. L., Duchene, S., & Holmes, E. C. (2017). Comparative analysis estimates the relative frequencies of co-divergence and cross-species transmission within viral families. PLoS Pathog, 13(2), e1006215.
34.
Zurück zum Zitat Pryzdial, E., Lin, B., & Sutherland, M. (2017). Virus-Platelet associations. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in Thrombotic and Non-Thrombotic Disorders (Vol. 2, pp. 1085–1101). Springer International Publishing.CrossRef Pryzdial, E., Lin, B., & Sutherland, M. (2017). Virus-Platelet associations. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in Thrombotic and Non-Thrombotic Disorders (Vol. 2, pp. 1085–1101). Springer International Publishing.CrossRef
35.
Zurück zum Zitat Menter, D. G. (2021). Where is Waldo? or find the platelet. Cancer and Metastasis Reviews, 40(3), 649–655.PubMedCrossRef Menter, D. G. (2021). Where is Waldo? or find the platelet. Cancer and Metastasis Reviews, 40(3), 649–655.PubMedCrossRef
36.
Zurück zum Zitat Svoboda, O., & Bartunek, P. (2015). Origins of the vertebrate erythro/megakaryocytic system. Biomed Res Int, 2015, 632171. Svoboda, O., & Bartunek, P. (2015). Origins of the vertebrate erythro/megakaryocytic system. Biomed Res Int, 2015, 632171.
37.
Zurück zum Zitat Weyrich, A. S., Lindemann, S., & Zimmerman, G. A. (2003). The evolving role of platelets in inflammation. Journal of Thrombosis and Haemostasis, 1(9), 1897–1905.PubMedCrossRef Weyrich, A. S., Lindemann, S., & Zimmerman, G. A. (2003). The evolving role of platelets in inflammation. Journal of Thrombosis and Haemostasis, 1(9), 1897–1905.PubMedCrossRef
38.
Zurück zum Zitat Banerjee, M., Huang, Y., Joshi, S., Popa, G. J., Mendenhall, M. D., Wang, Q. J., et al. (2020). Platelets endocytose viral particles and are activated via TLR (toll-like receptor) signaling. Arterioscler Thromb Vasc Biol, ATVBAHA120314180. Banerjee, M., Huang, Y., Joshi, S., Popa, G. J., Mendenhall, M. D., Wang, Q. J., et al. (2020). Platelets endocytose viral particles and are activated via TLR (toll-like receptor) signaling. Arterioscler Thromb Vasc Biol, ATVBAHA120314180.
39.
Zurück zum Zitat Jansen, A. J. G., Spaan, T., Low, H. Z., Di Iorio, D., van den Brand, J., Tieke, M., et al. (2020). Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Advances, 4(13), 2967–2978.PubMedPubMedCentralCrossRef Jansen, A. J. G., Spaan, T., Low, H. Z., Di Iorio, D., van den Brand, J., Tieke, M., et al. (2020). Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Advances, 4(13), 2967–2978.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Shimony, N., Elkin, G., Kolodkin-Gal, D., Krasny, L., Urieli-Shoval, S., & Haviv, Y. S. (2009). Analysis of adenoviral attachment to human platelets. Virol J, 6, 25.PubMedPubMedCentralCrossRef Shimony, N., Elkin, G., Kolodkin-Gal, D., Krasny, L., Urieli-Shoval, S., & Haviv, Y. S. (2009). Analysis of adenoviral attachment to human platelets. Virol J, 6, 25.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D. Y., Chen, L., et al. (2020). Presumed asymptomatic carrier transmission of COVID-19. JAMA Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D. Y., Chen, L., et al. (2020). Presumed asymptomatic carrier transmission of COVID-19. JAMA
42.
Zurück zum Zitat Sakurai, A., Sasaki, T., Kato, S., Hayashi, M., Tsuzuki, S. I., Ishihara, T., et al. (2020). Natural history of asymptomatic SARS-CoV-2 infection. N Engl J Med Sakurai, A., Sasaki, T., Kato, S., Hayashi, M., Tsuzuki, S. I., Ishihara, T., et al. (2020). Natural history of asymptomatic SARS-CoV-2 infection. N Engl J Med
43.
Zurück zum Zitat Sungnak, W., Huang, N., Becavin, C., Berg, M., Queen, R., Litvinukova, M., et al. (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 26(5), 681–687.PubMedPubMedCentralCrossRef Sungnak, W., Huang, N., Becavin, C., Berg, M., Queen, R., Litvinukova, M., et al. (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 26(5), 681–687.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Bhatraju, P. K., Ghassemieh, B. J., Nichols, M., Kim, R., Jerome, K. R., Nalla, A. K., et al. (2020). Covid-19 in critically ill patients in the Seattle region - Case series. New England Journal of Medicine, 382(21), 2012–2022.CrossRef Bhatraju, P. K., Ghassemieh, B. J., Nichols, M., Kim, R., Jerome, K. R., Nalla, A. K., et al. (2020). Covid-19 in critically ill patients in the Seattle region - Case series. New England Journal of Medicine, 382(21), 2012–2022.CrossRef
45.
Zurück zum Zitat Lechien, J. R., Chiesa-Estomba, C. M., De Siati, D. R., Horoi, M., Le Bon, S. D., Rodriguez, A., et al. (2020). Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol Lechien, J. R., Chiesa-Estomba, C. M., De Siati, D. R., Horoi, M., Le Bon, S. D., Rodriguez, A., et al. (2020). Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol
46.
Zurück zum Zitat Mariz, B., Brandao, T. B., Ribeiro, A. C. P., Lopes, M. A., & Santos-Silva, A. R. (2020). New insights for the pathogenesis of COVID-19-related dysgeusia. J Dent Res, 22034520936638. Mariz, B., Brandao, T. B., Ribeiro, A. C. P., Lopes, M. A., & Santos-Silva, A. R. (2020). New insights for the pathogenesis of COVID-19-related dysgeusia. J Dent Res, 22034520936638.
47.
Zurück zum Zitat Poggiali, E., Ramos, P. M., Bastoni, D., Vercelli, A., & Magnacavallo, A. (2020). Abdominal pain: A real challenge in novel COVID-19 infection. Eur J Case Rep Intern Med, 7(4), 001632. Poggiali, E., Ramos, P. M., Bastoni, D., Vercelli, A., & Magnacavallo, A. (2020). Abdominal pain: A real challenge in novel COVID-19 infection. Eur J Case Rep Intern Med, 7(4), 001632.
48.
Zurück zum Zitat Qiu, C., Cui, C., Hautefort, C., Haehner, A., Zhao, J., Yao, Q., et al. (2020). Olfactory and gustatory dysfunction as an early identifier of COVID-19 in adults and children: An international multicenter study. Otolaryngol Head Neck Surg, 194599820934376. Qiu, C., Cui, C., Hautefort, C., Haehner, A., Zhao, J., Yao, Q., et al. (2020). Olfactory and gustatory dysfunction as an early identifier of COVID-19 in adults and children: An international multicenter study. Otolaryngol Head Neck Surg, 194599820934376.
49.
Zurück zum Zitat Tabuchi, A., & Kuebler, W. M. (2008). Endothelium-platelet interactions in inflammatory lung disease. Vascular Pharmacology, 49(4–6), 141–150.PubMedCrossRef Tabuchi, A., & Kuebler, W. M. (2008). Endothelium-platelet interactions in inflammatory lung disease. Vascular Pharmacology, 49(4–6), 141–150.PubMedCrossRef
50.
Zurück zum Zitat Solomon Tsegaye, T., Gnirss, K., Rahe-Meyer, N., Kiene, M., Kramer-Kuhl, A., Behrens, G., et al. (2013). Platelet activation suppresses HIV-1 infection of T cells. Retrovirology, 10, 48.PubMedPubMedCentralCrossRef Solomon Tsegaye, T., Gnirss, K., Rahe-Meyer, N., Kiene, M., Kramer-Kuhl, A., Behrens, G., et al. (2013). Platelet activation suppresses HIV-1 infection of T cells. Retrovirology, 10, 48.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Real, F., Capron, C., Sennepin, A., Arrigucci, R., Zhu, A., Sannier, G., et al. (2020). Platelets from HIV-infected individuals on antiretroviral drug therapy with poor CD4(+) T cell recovery can harbor replication-competent HIV despite viral suppression. Sci Transl Med, 12(535) Real, F., Capron, C., Sennepin, A., Arrigucci, R., Zhu, A., Sannier, G., et al. (2020). Platelets from HIV-infected individuals on antiretroviral drug therapy with poor CD4(+) T cell recovery can harbor replication-competent HIV despite viral suppression. Sci Transl Med, 12(535)
52.
Zurück zum Zitat Opal, S. M. (2000). Phylogenetic and functional relationships between coagulation and the innate immune response. Critical Care Medicine, 28(9 Suppl), S77-80.PubMedCrossRef Opal, S. M. (2000). Phylogenetic and functional relationships between coagulation and the innate immune response. Critical Care Medicine, 28(9 Suppl), S77-80.PubMedCrossRef
53.
Zurück zum Zitat Momi, S., & Wiwanitkit, V. (2017). Phylogeny of Blood Platelets. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in Thrombotic and Non-Thrombotic Disorders (pp. 11–20). Springer.CrossRef Momi, S., & Wiwanitkit, V. (2017). Phylogeny of Blood Platelets. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in Thrombotic and Non-Thrombotic Disorders (pp. 11–20). Springer.CrossRef
54.
Zurück zum Zitat Pascual-Anaya, J., Albuixech-Crespo, B., Somorjai, I. M., Carmona, R., Oisi, Y., Alvarez, S., et al. (2013). The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Developmental Biology, 375(2), 182–192.PubMedCrossRef Pascual-Anaya, J., Albuixech-Crespo, B., Somorjai, I. M., Carmona, R., Oisi, Y., Alvarez, S., et al. (2013). The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Developmental Biology, 375(2), 182–192.PubMedCrossRef
55.
Zurück zum Zitat Monahan-Earley, R., Dvorak, A. M., & Aird, W. C. (2013). Evolutionary origins of the blood vascular system and endothelium. Journal of Thrombosis and Haemostasis, 11(Suppl 1), 46–66.PubMedCrossRef Monahan-Earley, R., Dvorak, A. M., & Aird, W. C. (2013). Evolutionary origins of the blood vascular system and endothelium. Journal of Thrombosis and Haemostasis, 11(Suppl 1), 46–66.PubMedCrossRef
56.
Zurück zum Zitat Ponczek, M. B., Bijak, M. Z., & Nowak, P. Z. (2012). Evolution of thrombin and other hemostatic proteases by survey of protochordate, hemichordate, and echinoderm genomes. Journal of Molecular Evolution, 74(5–6), 319–331.PubMedCrossRef Ponczek, M. B., Bijak, M. Z., & Nowak, P. Z. (2012). Evolution of thrombin and other hemostatic proteases by survey of protochordate, hemichordate, and echinoderm genomes. Journal of Molecular Evolution, 74(5–6), 319–331.PubMedCrossRef
57.
Zurück zum Zitat Han, Y., Huang, G., Zhang, Q., Yuan, S., Liu, J., Zheng, T., et al. (2010). The primitive immune system of amphioxus provides insights into the ancestral structure of the vertebrate immune system. Developmental and Comparative Immunology, 34(8), 791–796.PubMedCrossRef Han, Y., Huang, G., Zhang, Q., Yuan, S., Liu, J., Zheng, T., et al. (2010). The primitive immune system of amphioxus provides insights into the ancestral structure of the vertebrate immune system. Developmental and Comparative Immunology, 34(8), 791–796.PubMedCrossRef
58.
Zurück zum Zitat Levin, J., & Bang, F. B. (1964). The role of endotoxin in the extracellular coagulation of Limulus blood. Bulletin of the Johns Hopkins Hospital, 115, 265–274.PubMed Levin, J., & Bang, F. B. (1964). The role of endotoxin in the extracellular coagulation of Limulus blood. Bulletin of the Johns Hopkins Hospital, 115, 265–274.PubMed
59.
Zurück zum Zitat Levin, J., & Bang, F. B. (1964). A description of cellular coagulation in the Limulus. Bulletin of the Johns Hopkins Hospital, 115, 337–345.PubMed Levin, J., & Bang, F. B. (1964). A description of cellular coagulation in the Limulus. Bulletin of the Johns Hopkins Hospital, 115, 337–345.PubMed
60.
Zurück zum Zitat Armstrong, P. B. (1980). Adhesion and spreading of Limulus blood cells on artificial surfaces. Journal of Cell Science, 44, 243–262.PubMedCrossRef Armstrong, P. B. (1980). Adhesion and spreading of Limulus blood cells on artificial surfaces. Journal of Cell Science, 44, 243–262.PubMedCrossRef
61.
Zurück zum Zitat Young, N. S., Levin, J., & Prendergast, R. A. (1972). An invertebrate coagulation system activated by endotoxin: Evidence for enzymatic mediation. The Journal of Clinical Investigation, 51(7), 1790–1797.PubMedPubMedCentralCrossRef Young, N. S., Levin, J., & Prendergast, R. A. (1972). An invertebrate coagulation system activated by endotoxin: Evidence for enzymatic mediation. The Journal of Clinical Investigation, 51(7), 1790–1797.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Armstrong, P. B., & Rickles, F. R. (1982). Endotoxin-induced degranulation of the Limulus amebocyte. Experimental Cell Research, 140(1), 15–24.PubMedCrossRef Armstrong, P. B., & Rickles, F. R. (1982). Endotoxin-induced degranulation of the Limulus amebocyte. Experimental Cell Research, 140(1), 15–24.PubMedCrossRef
63.
Zurück zum Zitat Iwanaga, S., Miyata, T., Tokunaga, F., & Muta, T. (1992). Molecular mechanism of hemolymph clotting system in Limulus. Thrombosis Research, 68(1), 1–32.PubMedCrossRef Iwanaga, S., Miyata, T., Tokunaga, F., & Muta, T. (1992). Molecular mechanism of hemolymph clotting system in Limulus. Thrombosis Research, 68(1), 1–32.PubMedCrossRef
64.
Zurück zum Zitat Murer, E. H., Levin, J., & Holme, R. (1975). Isolation and studies of the granules of the amebocytes of Limulus polyphemus, the horseshoe crab. Journal of Cellular Physiology, 86(3 Pt 1), 533–542.PubMedCrossRef Murer, E. H., Levin, J., & Holme, R. (1975). Isolation and studies of the granules of the amebocytes of Limulus polyphemus, the horseshoe crab. Journal of Cellular Physiology, 86(3 Pt 1), 533–542.PubMedCrossRef
65.
Zurück zum Zitat Ratnoff, O. D. (1987). The evolution of hemostatic mechanisms. Perspectives in Biology and Medicine, 31(1), 4–33.PubMedCrossRef Ratnoff, O. D. (1987). The evolution of hemostatic mechanisms. Perspectives in Biology and Medicine, 31(1), 4–33.PubMedCrossRef
66.
Zurück zum Zitat Grant, M. A., Beeler, D. L., Spokes, K. C., Chen, J., Dharaneeswaran, H., Sciuto, T. E., et al. (2017). Identification of extant vertebrate Myxine glutinosa VWF: Evolutionary conservation of primary hemostasis. Blood, 130(23), 2548–2558.PubMedPubMedCentralCrossRef Grant, M. A., Beeler, D. L., Spokes, K. C., Chen, J., Dharaneeswaran, H., Sciuto, T. E., et al. (2017). Identification of extant vertebrate Myxine glutinosa VWF: Evolutionary conservation of primary hemostasis. Blood, 130(23), 2548–2558.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Mattisson, A., & Fänge, R. (1977). Light- and electronmicroscopic observations on the blood cells of the Atlantic Hagfish, Myxine glutinosa (L.). Acta Zoologica, 58, 205–221.CrossRef Mattisson, A., & Fänge, R. (1977). Light- and electronmicroscopic observations on the blood cells of the Atlantic Hagfish, Myxine glutinosa (L.). Acta Zoologica, 58, 205–221.CrossRef
68.
Zurück zum Zitat Hyder, S. L., Cayer, M. L., & Pettey, C. L. (1983). Cell types in peripheral blood of the nurse shark: An approach to structure and function. Tissue and Cell, 15(3), 437–455.PubMedCrossRef Hyder, S. L., Cayer, M. L., & Pettey, C. L. (1983). Cell types in peripheral blood of the nurse shark: An approach to structure and function. Tissue and Cell, 15(3), 437–455.PubMedCrossRef
69.
Zurück zum Zitat Shepro, D., Belamarich, F. A., & Branson, R. (1966). The fine structure of the thrombocyte in the dogfish (Mustelus canis) with special reference to microtubule orientation. Anatomical Record, 156(2), 203–214.CrossRef Shepro, D., Belamarich, F. A., & Branson, R. (1966). The fine structure of the thrombocyte in the dogfish (Mustelus canis) with special reference to microtubule orientation. Anatomical Record, 156(2), 203–214.CrossRef
70.
Zurück zum Zitat Khandekar, G., Kim, S., & Jagadeeswaran, P. (2012). Zebrafish thrombocytes: Functions and origins. Adv Hematol, 2012, 857058. Khandekar, G., Kim, S., & Jagadeeswaran, P. (2012). Zebrafish thrombocytes: Functions and origins. Adv Hematol, 2012, 857058.
71.
Zurück zum Zitat Rowley, A. F., Hill, D. J., Ray, C. E., & Munro, R. (1997). Haemostasis in fish–an evolutionary perspective. Thrombosis and Haemostasis, 77(2), 227–233.PubMedCrossRef Rowley, A. F., Hill, D. J., Ray, C. E., & Munro, R. (1997). Haemostasis in fish–an evolutionary perspective. Thrombosis and Haemostasis, 77(2), 227–233.PubMedCrossRef
72.
Zurück zum Zitat Jagadeeswaran, P., Sheehan, J. P., Craig, F. E., & Troyer, D. (1999). Identification and characterization of zebrafish thrombocytes. British Journal of Haematology, 107(4), 731–738.PubMedCrossRef Jagadeeswaran, P., Sheehan, J. P., Craig, F. E., & Troyer, D. (1999). Identification and characterization of zebrafish thrombocytes. British Journal of Haematology, 107(4), 731–738.PubMedCrossRef
73.
Zurück zum Zitat Ribeiro, M. L., DaMatta, R. A., Diniz, J. A., de Souza, W., & do Nascimento, J. L., & de Carvalho, T. M. (2007). Blood and inflammatory cells of the lungfish Lepidosiren paradoxa. Fish & Shellfish Immunology, 23(1), 178–187.CrossRef Ribeiro, M. L., DaMatta, R. A., Diniz, J. A., de Souza, W., & do Nascimento, J. L., & de Carvalho, T. M. (2007). Blood and inflammatory cells of the lungfish Lepidosiren paradoxa. Fish & Shellfish Immunology, 23(1), 178–187.CrossRef
74.
Zurück zum Zitat Hiong, K. C., Tan, X. R., Boo, M. V., Wong, W. P., Chew, S. F., & Ip, Y. K. (2015). Aestivation induces changes in transcription and translation of coagulation factor II and fibrinogen gamma chain in the liver of the African lungfish Protopterus annectens. Journal of Experimental Biology, 218(Pt 23), 3717–3728. Hiong, K. C., Tan, X. R., Boo, M. V., Wong, W. P., Chew, S. F., & Ip, Y. K. (2015). Aestivation induces changes in transcription and translation of coagulation factor II and fibrinogen gamma chain in the liver of the African lungfish Protopterus annectens. Journal of Experimental Biology, 218(Pt 23), 3717–3728.
75.
Zurück zum Zitat Lewis, J. (1996). Comparative hemostasis in vertebrates. Plenum Press.CrossRef Lewis, J. (1996). Comparative hemostasis in vertebrates. Plenum Press.CrossRef
76.
Zurück zum Zitat Canfield, P. J. (1998). Comparative cell morphology in the peripheral blood film from exotic and native animals. Australian Veterinary Journal, 76(12), 793–800.PubMedCrossRef Canfield, P. J. (1998). Comparative cell morphology in the peripheral blood film from exotic and native animals. Australian Veterinary Journal, 76(12), 793–800.PubMedCrossRef
77.
Zurück zum Zitat DaMatta, R. A., Manhaes, L., Lassounskaia, E., & de Souza, W. (1999). Chicken thrombocytes in culture: Lymphocyte-conditioned medium delays apoptosis. Tissue and Cell, 31(3), 255–263.PubMedCrossRef DaMatta, R. A., Manhaes, L., Lassounskaia, E., & de Souza, W. (1999). Chicken thrombocytes in culture: Lymphocyte-conditioned medium delays apoptosis. Tissue and Cell, 31(3), 255–263.PubMedCrossRef
78.
Zurück zum Zitat Gerrard, J. M., White, J. G., & Rao, G. H. (1974). Effects of the lonophore A23187 on the blood platelets II. Influence on ultrastructure. Am J Pathol, 77(2), 151–166.PubMed Gerrard, J. M., White, J. G., & Rao, G. H. (1974). Effects of the lonophore A23187 on the blood platelets II. Influence on ultrastructure. Am J Pathol, 77(2), 151–166.PubMed
79.
Zurück zum Zitat Lewis, J. H. (1975). Comparative hematology: Studies on opossums Didelphis marsupialis (Virginianus). Comparative Biochemistry and Physiology, A: Comparative Physiology, 51(2), 275–280.PubMedCrossRef Lewis, J. H. (1975). Comparative hematology: Studies on opossums Didelphis marsupialis (Virginianus). Comparative Biochemistry and Physiology, A: Comparative Physiology, 51(2), 275–280.PubMedCrossRef
80.
Zurück zum Zitat Bruce, I. J., & Kerry, R. (1987). The effect of chloramphenicol and cycloheximide on platelet aggregation and protein synthesis. Biochemical Pharmacology, 36(11), 1769–1773.PubMedCrossRef Bruce, I. J., & Kerry, R. (1987). The effect of chloramphenicol and cycloheximide on platelet aggregation and protein synthesis. Biochemical Pharmacology, 36(11), 1769–1773.PubMedCrossRef
81.
Zurück zum Zitat Weyrich, A. S., Schwertz, H., Kraiss, L. W., & Zimmerman, G. A. (2009). Protein synthesis by platelets: Historical and new perspectives. Journal of Thrombosis and Haemostasis, 7(2), 241–246.PubMedCrossRef Weyrich, A. S., Schwertz, H., Kraiss, L. W., & Zimmerman, G. A. (2009). Protein synthesis by platelets: Historical and new perspectives. Journal of Thrombosis and Haemostasis, 7(2), 241–246.PubMedCrossRef
82.
Zurück zum Zitat Zimmerman, G. A., & Weyrich, A. S. (2008). Signal-dependent protein synthesis by activated platelets: New pathways to altered phenotype and function. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(3), s17-24.PubMedPubMedCentralCrossRef Zimmerman, G. A., & Weyrich, A. S. (2008). Signal-dependent protein synthesis by activated platelets: New pathways to altered phenotype and function. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(3), s17-24.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Quirino-Teixeira, A. C., Rozini, S. V., Barbosa-Lima, G., Coelho, D. R., Carneiro, P. H., Mohana-Borges, R., et al. (2020). Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Advances, 4(9), 2018–2031.PubMedPubMedCentralCrossRef Quirino-Teixeira, A. C., Rozini, S. V., Barbosa-Lima, G., Coelho, D. R., Carneiro, P. H., Mohana-Borges, R., et al. (2020). Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Advances, 4(9), 2018–2031.PubMedPubMedCentralCrossRef
84.
85.
Zurück zum Zitat Sutherland, M. R., Simon, A. Y., Serrano, K., Schubert, P., Acker, J. P., & Pryzdial, E. L. (2016). Dengue virus persists and replicates during storage of platelet and red blood cell units. Transfusion, 56(5), 1129–1137.PubMedCrossRef Sutherland, M. R., Simon, A. Y., Serrano, K., Schubert, P., Acker, J. P., & Pryzdial, E. L. (2016). Dengue virus persists and replicates during storage of platelet and red blood cell units. Transfusion, 56(5), 1129–1137.PubMedCrossRef
87.
Zurück zum Zitat Vogt, M. B., Lahon, A., Arya, R. P., Spencer Clinton, J. L., & Rico-Hesse, R. (2019). Dengue viruses infect human megakaryocytes, with probable clinical consequences. PLoS Negl Trop Dis, 13(11), e0007837. Vogt, M. B., Lahon, A., Arya, R. P., Spencer Clinton, J. L., & Rico-Hesse, R. (2019). Dengue viruses infect human megakaryocytes, with probable clinical consequences. PLoS Negl Trop Dis, 13(11), e0007837.
88.
Zurück zum Zitat Pozner, R. G., Ure, A. E., Jaquenod de Giusti, C., D'Atri, L. P., Italiano, J. E., Torres, O., et al. (2010). Junin virus infection of human hematopoietic progenitors impairs in vitro proplatelet formation and platelet release via a bystander effect involving type I IFN signaling. PLoS Pathog, 6(4), e1000847. Pozner, R. G., Ure, A. E., Jaquenod de Giusti, C., D'Atri, L. P., Italiano, J. E., Torres, O., et al. (2010). Junin virus infection of human hematopoietic progenitors impairs in vitro proplatelet formation and platelet release via a bystander effect involving type I IFN signaling. PLoS Pathog, 6(4), e1000847.
89.
Zurück zum Zitat Battinelli, E. M., Thon, J. N., Okazaki, R., Peters, C. G., Vijey, P., Wilkie, A. R., et al. (2019). Megakaryocytes package contents into separate alpha-granules that are differentially distributed in platelets. Blood Advances, 3(20), 3092–3098.PubMedPubMedCentralCrossRef Battinelli, E. M., Thon, J. N., Okazaki, R., Peters, C. G., Vijey, P., Wilkie, A. R., et al. (2019). Megakaryocytes package contents into separate alpha-granules that are differentially distributed in platelets. Blood Advances, 3(20), 3092–3098.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Thon, J. N., Macleod, H., Begonja, A. J., Zhu, J., Lee, K. C., Mogilner, A., et al. (2012). Microtubule and cortical forces determine platelet size during vascular platelet production. Nature Communications, 3, 852.PubMedCrossRef Thon, J. N., Macleod, H., Begonja, A. J., Zhu, J., Lee, K. C., Mogilner, A., et al. (2012). Microtubule and cortical forces determine platelet size during vascular platelet production. Nature Communications, 3, 852.PubMedCrossRef
92.
Zurück zum Zitat Brass, L. F. (2005). Did dinosaurs have megakaryocytes? New ideas about platelets and their progenitors. The Journal of Clinical Investigation, 115(12), 3329–3331.PubMedPubMedCentralCrossRef Brass, L. F. (2005). Did dinosaurs have megakaryocytes? New ideas about platelets and their progenitors. The Journal of Clinical Investigation, 115(12), 3329–3331.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Martin, J. F., & Wagner, G. P. (2019). The origin of platelets enabled the evolution of eutherian placentation. Biology Letters, 15(7), 20190374.PubMedPubMedCentralCrossRef Martin, J. F., & Wagner, G. P. (2019). The origin of platelets enabled the evolution of eutherian placentation. Biology Letters, 15(7), 20190374.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Gupalo, E., Kuk, C., Qadura, M., Buriachkovskaia, L., & Othman, M. (2013). Platelet-adenovirus vs. inert particles interaction: Effect on aggregation and the role of platelet membrane receptors. Platelets, 24(5), 383–391. Gupalo, E., Kuk, C., Qadura, M., Buriachkovskaia, L., & Othman, M. (2013). Platelet-adenovirus vs. inert particles interaction: Effect on aggregation and the role of platelet membrane receptors. Platelets, 24(5), 383–391.
95.
Zurück zum Zitat Ghosh, K., Gangodkar, S., Jain, P., Shetty, S., Ramjee, S., Poddar, P., et al. (2008). Imaging the interaction between dengue 2 virus and human blood platelets using atomic force and electron microscopy. Journal of Electron Microscopy (Tokyo), 57(3), 113–118.CrossRef Ghosh, K., Gangodkar, S., Jain, P., Shetty, S., Ramjee, S., Poddar, P., et al. (2008). Imaging the interaction between dengue 2 virus and human blood platelets using atomic force and electron microscopy. Journal of Electron Microscopy (Tokyo), 57(3), 113–118.CrossRef
96.
Zurück zum Zitat Pretorius, E., Oberholzer, H. M., Smit, E., Steyn, E., Briedenhann, S., & Franz, C. R. (2008). Ultrastructural changes in platelet aggregates of HIV patients: A scanning electron microscopy study. Ultrastructural Pathology, 32(3), 75–79.PubMedCrossRef Pretorius, E., Oberholzer, H. M., Smit, E., Steyn, E., Briedenhann, S., & Franz, C. R. (2008). Ultrastructural changes in platelet aggregates of HIV patients: A scanning electron microscopy study. Ultrastructural Pathology, 32(3), 75–79.PubMedCrossRef
97.
Zurück zum Zitat Youssefian, T., Drouin, A., Masse, J. M., Guichard, J., & Cramer, E. M. (2002). Host defense role of platelets: Engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood, 99(11), 4021–4029.PubMedCrossRef Youssefian, T., Drouin, A., Masse, J. M., Guichard, J., & Cramer, E. M. (2002). Host defense role of platelets: Engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation. Blood, 99(11), 4021–4029.PubMedCrossRef
98.
Zurück zum Zitat Rahbar, A., & Soderberg-Naucler, C. (2005). Human cytomegalovirus infection of endothelial cells triggers platelet adhesion and aggregation. Journal of Virology, 79(4), 2211–2220.PubMedPubMedCentralCrossRef Rahbar, A., & Soderberg-Naucler, C. (2005). Human cytomegalovirus infection of endothelial cells triggers platelet adhesion and aggregation. Journal of Virology, 79(4), 2211–2220.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Varon, D., & Shai, E. (2009). Role of platelet-derived microparticles in angiogenesis and tumor progression. Discovery Medicine, 8(43), 237–241.PubMed Varon, D., & Shai, E. (2009). Role of platelet-derived microparticles in angiogenesis and tumor progression. Discovery Medicine, 8(43), 237–241.PubMed
100.
Zurück zum Zitat Alonzo, M. T., Lacuesta, T. L., Dimaano, E. M., Kurosu, T., Suarez, L. A., Mapua, C. A., et al. (2012). Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue virus infections. Journal of Infectious Diseases, 205(8), 1321–1329.CrossRef Alonzo, M. T., Lacuesta, T. L., Dimaano, E. M., Kurosu, T., Suarez, L. A., Mapua, C. A., et al. (2012). Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue virus infections. Journal of Infectious Diseases, 205(8), 1321–1329.CrossRef
102.
Zurück zum Zitat Alonso, A. L., & Cox, D. (2015). Platelet interactions with viruses and parasites. Platelets, 26(4), 317–323.PubMedCrossRef Alonso, A. L., & Cox, D. (2015). Platelet interactions with viruses and parasites. Platelets, 26(4), 317–323.PubMedCrossRef
103.
Zurück zum Zitat Alonso-Villaverde Lozano, C. (2009). Physiopathology of cardiovascular disease in HIV-infected patients. Enfermedades Infecciosas y Microbiologia Clinica, 27(Suppl 1), 33–39.PubMedCrossRef Alonso-Villaverde Lozano, C. (2009). Physiopathology of cardiovascular disease in HIV-infected patients. Enfermedades Infecciosas y Microbiologia Clinica, 27(Suppl 1), 33–39.PubMedCrossRef
104.
Zurück zum Zitat Hottz, E. D., Bozza, F. A., & Bozza, P. T. (2018). Platelets in Immune Response to Virus and Immunopathology of Viral Infections. Front Med (Lausanne), 5, 121.CrossRef Hottz, E. D., Bozza, F. A., & Bozza, P. T. (2018). Platelets in Immune Response to Virus and Immunopathology of Viral Infections. Front Med (Lausanne), 5, 121.CrossRef
105.
Zurück zum Zitat Seyoum, M., Enawgaw, B., & Melku, M. (2018). Human blood platelets and viruses: Defense mechanism and role in the removal of viral pathogens. Thrombosis Journal, 16, 16.PubMedPubMedCentralCrossRef Seyoum, M., Enawgaw, B., & Melku, M. (2018). Human blood platelets and viruses: Defense mechanism and role in the removal of viral pathogens. Thrombosis Journal, 16, 16.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Wan, S. W., Yang, Y. W., Chu, Y. T., Lin, C. F., Chang, C. P., Yeh, T. M., et al. (2016). Anti-dengue virus nonstructural protein 1 antibodies contribute to platelet phagocytosis by macrophages. Thrombosis and Haemostasis, 115(3), 646–656.PubMedCrossRef Wan, S. W., Yang, Y. W., Chu, Y. T., Lin, C. F., Chang, C. P., Yeh, T. M., et al. (2016). Anti-dengue virus nonstructural protein 1 antibodies contribute to platelet phagocytosis by macrophages. Thrombosis and Haemostasis, 115(3), 646–656.PubMedCrossRef
107.
Zurück zum Zitat Nagasawa, T., Nakayasu, C., Rieger, A. M., Barreda, D. R., Somamoto, T., & Nakao, M. (2014). Phagocytosis by thrombocytes is a conserved innate immune mechanism in lower vertebrates. Frontiers in Immunology, 5, 445.PubMedPubMedCentralCrossRef Nagasawa, T., Nakayasu, C., Rieger, A. M., Barreda, D. R., Somamoto, T., & Nakao, M. (2014). Phagocytosis by thrombocytes is a conserved innate immune mechanism in lower vertebrates. Frontiers in Immunology, 5, 445.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Liu, L. P., Shan, C. W., Liu, X. H., Xiao, H. C., & Yang, S. Q. (1998). Effect of procainamide on ultrastructure of blood platelet in rabbits. Zhongguo Yao Li Xue Bao, 19(4), 376–379.PubMed Liu, L. P., Shan, C. W., Liu, X. H., Xiao, H. C., & Yang, S. Q. (1998). Effect of procainamide on ultrastructure of blood platelet in rabbits. Zhongguo Yao Li Xue Bao, 19(4), 376–379.PubMed
109.
Zurück zum Zitat Ludhiadch, A., Muralidharan, A., Balyan, R., & Munshi, A. (2020). The molecular basis of platelet biogenesis, activation, aggregation and implications in neurological disorders. International Journal of Neuroscience, 130(12), 1237–1249.CrossRef Ludhiadch, A., Muralidharan, A., Balyan, R., & Munshi, A. (2020). The molecular basis of platelet biogenesis, activation, aggregation and implications in neurological disorders. International Journal of Neuroscience, 130(12), 1237–1249.CrossRef
110.
Zurück zum Zitat Nguyen, T. H., Schuster, N., Greinacher, A., & Aurich, K. (2018). Uptake pathways of protein-coated magnetic nanoparticles in platelets. ACS Applied Materials & Interfaces, 10(34), 28314–28321.CrossRef Nguyen, T. H., Schuster, N., Greinacher, A., & Aurich, K. (2018). Uptake pathways of protein-coated magnetic nanoparticles in platelets. ACS Applied Materials & Interfaces, 10(34), 28314–28321.CrossRef
111.
Zurück zum Zitat Selvadurai, M. V., & Hamilton, J. R. (2018). Structure and function of the open canalicular system - the platelet’s specialized internal membrane network. Platelets, 29(4), 319–325.PubMedCrossRef Selvadurai, M. V., & Hamilton, J. R. (2018). Structure and function of the open canalicular system - the platelet’s specialized internal membrane network. Platelets, 29(4), 319–325.PubMedCrossRef
112.
Zurück zum Zitat O’Brien, S., Kent, N. J., Lucitt, M., Ricco, A. J., McAtamney, C., Kenny, D., et al. (2012). Effective hydrodynamic shaping of sample streams in a microfluidic parallel-plate flow-assay device: Matching whole blood dynamic viscosity. IEEE Transactions on Biomedical Engineering, 59(2), 374–382.PubMedCrossRef O’Brien, S., Kent, N. J., Lucitt, M., Ricco, A. J., McAtamney, C., Kenny, D., et al. (2012). Effective hydrodynamic shaping of sample streams in a microfluidic parallel-plate flow-assay device: Matching whole blood dynamic viscosity. IEEE Transactions on Biomedical Engineering, 59(2), 374–382.PubMedCrossRef
113.
Zurück zum Zitat Jen, C. J., & Tai, Y. W. (1992). Morphological study of platelet adhesion dynamics under whole blood flow conditions. Platelets, 3(3), 145–153.PubMedCrossRef Jen, C. J., & Tai, Y. W. (1992). Morphological study of platelet adhesion dynamics under whole blood flow conditions. Platelets, 3(3), 145–153.PubMedCrossRef
114.
Zurück zum Zitat Folie, B. J., & McIntire, L. V. (1989). Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys J, 56(6), 1121–1141. Folie, B. J., & McIntire, L. V. (1989). Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophys J, 56(6), 1121–1141.
115.
Zurück zum Zitat Fedosov, D. A., Noguchi, H., & Gompper, G. (2014). Multiscale modeling of blood flow: From single cells to blood rheology. Biomechanics and Modeling in Mechanobiology, 13(2), 239–258.PubMedCrossRef Fedosov, D. A., Noguchi, H., & Gompper, G. (2014). Multiscale modeling of blood flow: From single cells to blood rheology. Biomechanics and Modeling in Mechanobiology, 13(2), 239–258.PubMedCrossRef
116.
Zurück zum Zitat Kumar, A., & Graham, M. D. (2012). Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys Rev Lett, 109(10), 108102. Kumar, A., & Graham, M. D. (2012). Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys Rev Lett, 109(10), 108102.
117.
Zurück zum Zitat Tokarev, A. A., Butylin, A. A., & Ataullakhanov, F. I. (2011). Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophysical Journal, 100(4), 799–808.PubMedPubMedCentralCrossRef Tokarev, A. A., Butylin, A. A., & Ataullakhanov, F. I. (2011). Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophysical Journal, 100(4), 799–808.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Tokarev, A. A., Butylin, A. A., Ermakova, E. A., Shnol, E. E., Panasenko, G. P., & Ataullakhanov, F. I. (2011). Finite platelet size could be responsible for platelet margination effect. Biophysical Journal, 101(8), 1835–1843.PubMedPubMedCentralCrossRef Tokarev, A. A., Butylin, A. A., Ermakova, E. A., Shnol, E. E., Panasenko, G. P., & Ataullakhanov, F. I. (2011). Finite platelet size could be responsible for platelet margination effect. Biophysical Journal, 101(8), 1835–1843.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Lee, S. Y., Ferrari, M., & Decuzzi, P. (2009). Design of bio-mimetic particles with enhanced vascular interaction. Journal of Biomechanics, 42(12), 1885–1890.PubMedCrossRef Lee, S. Y., Ferrari, M., & Decuzzi, P. (2009). Design of bio-mimetic particles with enhanced vascular interaction. Journal of Biomechanics, 42(12), 1885–1890.PubMedCrossRef
120.
Zurück zum Zitat Stukelj, R., Schara, K., Bedina-Zavec, A., Sustar, V., Pajnic, M., Paden, L., et al. (2017). Effect of shear stress in the flow through the sampling needle on concentration of nanovesicles isolated from blood. European Journal of Pharmaceutical Sciences, 98, 17–29.PubMedCrossRef Stukelj, R., Schara, K., Bedina-Zavec, A., Sustar, V., Pajnic, M., Paden, L., et al. (2017). Effect of shear stress in the flow through the sampling needle on concentration of nanovesicles isolated from blood. European Journal of Pharmaceutical Sciences, 98, 17–29.PubMedCrossRef
121.
Zurück zum Zitat De Gruttola, S., Boomsma, K., & Poulikakos, D. (2005). Computational simulation of a non-newtonian model of the blood separation process. Artificial Organs, 29(12), 949–959.PubMedCrossRef De Gruttola, S., Boomsma, K., & Poulikakos, D. (2005). Computational simulation of a non-newtonian model of the blood separation process. Artificial Organs, 29(12), 949–959.PubMedCrossRef
122.
Zurück zum Zitat Nesbitt, W. S., Westein, E., Tovar-Lopez, F. J., Tolouei, E., Mitchell, A., Fu, J., et al. (2009). A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 15(6), 665–673.PubMedCrossRef Nesbitt, W. S., Westein, E., Tovar-Lopez, F. J., Tolouei, E., Mitchell, A., Fu, J., et al. (2009). A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 15(6), 665–673.PubMedCrossRef
123.
Zurück zum Zitat Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B., & Honn, K. V. (1988). Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Research, 48(14), 4065–4072.PubMed Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B., & Honn, K. V. (1988). Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Research, 48(14), 4065–4072.PubMed
124.
Zurück zum Zitat Walsh, T. G., Metharom, P., & Berndt, M. C. (2015). The functional role of platelets in the regulation of angiogenesis. Platelets, 26(3), 199–211.PubMedCrossRef Walsh, T. G., Metharom, P., & Berndt, M. C. (2015). The functional role of platelets in the regulation of angiogenesis. Platelets, 26(3), 199–211.PubMedCrossRef
125.
Zurück zum Zitat Kim, K. H., Barazia, A., & Cho, J. (2013). Real-time imaging of heterotypic platelet-neutrophil interactions on the activated endothelium during vascular inflammation and thrombus Formation in live mice. J Vis Exp(74) Kim, K. H., Barazia, A., & Cho, J. (2013). Real-time imaging of heterotypic platelet-neutrophil interactions on the activated endothelium during vascular inflammation and thrombus Formation in live mice. J Vis Exp(74)
126.
Zurück zum Zitat Spectre, G., Zhu, L., Ersoy, M., Hjemdahl, P., Savion, N., Varon, D., et al. (2012). Platelets selectively enhance lymphocyte adhesion on subendothelial matrix under arterial flow conditions. Thrombosis and Haemostasis, 108(2), 328–337.PubMed Spectre, G., Zhu, L., Ersoy, M., Hjemdahl, P., Savion, N., Varon, D., et al. (2012). Platelets selectively enhance lymphocyte adhesion on subendothelial matrix under arterial flow conditions. Thrombosis and Haemostasis, 108(2), 328–337.PubMed
127.
Zurück zum Zitat Gardiner, E., & Andrews, R. (2017). Platelet Adhesion. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 309–319). Springer International Publishing.CrossRef Gardiner, E., & Andrews, R. (2017). Platelet Adhesion. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 309–319). Springer International Publishing.CrossRef
128.
Zurück zum Zitat Pothapragada, S., Zhang, P., Sheriff, J., Livelli, M., Slepian, M. J., Deng, Y., et al. (2015). A phenomenological particle-based platelet model for simulating filopodia formation during early activation. Int J Numer Method Biomed Eng, 31(3), e02702. Pothapragada, S., Zhang, P., Sheriff, J., Livelli, M., Slepian, M. J., Deng, Y., et al. (2015). A phenomenological particle-based platelet model for simulating filopodia formation during early activation. Int J Numer Method Biomed Eng, 31(3), e02702.
129.
Zurück zum Zitat Kunert, S., Meyer, I., Fleischhauer, S., Wannack, M., Fiedler, J., Shivdasani, R. A., et al. (2009). The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood, 114(27), 5532–5540.PubMedCrossRef Kunert, S., Meyer, I., Fleischhauer, S., Wannack, M., Fiedler, J., Shivdasani, R. A., et al. (2009). The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood, 114(27), 5532–5540.PubMedCrossRef
130.
Zurück zum Zitat Jackson, S. P., Nesbitt, W. S., & Westein, E. (2009). Dynamics of platelet thrombus formation. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 17–20.PubMedCrossRef Jackson, S. P., Nesbitt, W. S., & Westein, E. (2009). Dynamics of platelet thrombus formation. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 17–20.PubMedCrossRef
131.
Zurück zum Zitat Italiano, J. E., Jr., Bergmeier, W., Tiwari, S., Falet, H., Hartwig, J. H., Hoffmeister, K. M., et al. (2003). Mechanisms and implications of platelet discoid shape. Blood, 101(12), 4789–4796.PubMedCrossRef Italiano, J. E., Jr., Bergmeier, W., Tiwari, S., Falet, H., Hartwig, J. H., Hoffmeister, K. M., et al. (2003). Mechanisms and implications of platelet discoid shape. Blood, 101(12), 4789–4796.PubMedCrossRef
132.
Zurück zum Zitat Hartwig, J. H., Barkalow, K., Azim, A., & Italiano, J. (1999). The elegant platelet: Signals controlling actin assembly. Thrombosis and Haemostasis, 82(2), 392–398.PubMed Hartwig, J. H., Barkalow, K., Azim, A., & Italiano, J. (1999). The elegant platelet: Signals controlling actin assembly. Thrombosis and Haemostasis, 82(2), 392–398.PubMed
133.
Zurück zum Zitat White, J. G., & Rao, G. H. (1998). Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. American Journal of Pathology, 152(2), 597–609. White, J. G., & Rao, G. H. (1998). Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. American Journal of Pathology, 152(2), 597–609.
134.
Zurück zum Zitat Polanowska-Grabowska, R., Geanacopoulos, M., & Gear, A. R. (1993). Platelet adhesion to collagen via the alpha 2 beta 1 integrin under arterial flow conditions causes rapid tyrosine phosphorylation of pp125FAK. The Biochemical Journal, 296(Pt 3), 543–547.PubMedPubMedCentralCrossRef Polanowska-Grabowska, R., Geanacopoulos, M., & Gear, A. R. (1993). Platelet adhesion to collagen via the alpha 2 beta 1 integrin under arterial flow conditions causes rapid tyrosine phosphorylation of pp125FAK. The Biochemical Journal, 296(Pt 3), 543–547.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Falet, H. (2017). Anatomy of the Platelet Cytoskeleton. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 139–156). Springer International Publishing.CrossRef Falet, H. (2017). Anatomy of the Platelet Cytoskeleton. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 139–156). Springer International Publishing.CrossRef
136.
Zurück zum Zitat Rommel, M. G. E., Milde, C., Eberle, R., Schulze, H., & Modlich, U. (2019). Endothelial-platelet interactions in influenza-induced pneumonia: A potential therapeutic target. Anat Histol Embryol Rommel, M. G. E., Milde, C., Eberle, R., Schulze, H., & Modlich, U. (2019). Endothelial-platelet interactions in influenza-induced pneumonia: A potential therapeutic target. Anat Histol Embryol
137.
Zurück zum Zitat Almeida, V. H., Rondon, A. M. R., Gomes, T., & Monteiro, R. Q. (2019). Novel aspects of extracellular vesicles as mediators of cancer-associated thrombosis. Cells, 8(7) Almeida, V. H., Rondon, A. M. R., Gomes, T., & Monteiro, R. Q. (2019). Novel aspects of extracellular vesicles as mediators of cancer-associated thrombosis. Cells, 8(7)
138.
Zurück zum Zitat Enjeti, A. K., Ariyarajah, A., D’Crus, A., Seldon, M., & Lincz, L. F. (2016). Correlative analysis of nanoparticle tracking, flow cytometric and functional measurements for circulating microvesicles in normal subjects. Thrombosis Research, 145, 18–23.PubMedCrossRef Enjeti, A. K., Ariyarajah, A., D’Crus, A., Seldon, M., & Lincz, L. F. (2016). Correlative analysis of nanoparticle tracking, flow cytometric and functional measurements for circulating microvesicles in normal subjects. Thrombosis Research, 145, 18–23.PubMedCrossRef
139.
Zurück zum Zitat Enjeti, A. K., Ariyarajah, A., D’Crus, A., Seldon, M., & Lincz, L. F. (2017). Circulating microvesicle number, function and small RNA content vary with age, gender, smoking status, lipid and hormone profiles. Thrombosis Research, 156, 65–72.PubMedCrossRef Enjeti, A. K., Ariyarajah, A., D’Crus, A., Seldon, M., & Lincz, L. F. (2017). Circulating microvesicle number, function and small RNA content vary with age, gender, smoking status, lipid and hormone profiles. Thrombosis Research, 156, 65–72.PubMedCrossRef
140.
Zurück zum Zitat Gajos, K., Kaminska, A., Awsiuk, K., Bajor, A., Gruszczynski, K., Pawlak, A., et al. (2017). Immobilization and detection of platelet-derived extracellular vesicles on functionalized silicon substrate: Cytometric and spectrometric approach. Analytical and Bioanalytical Chemistry, 409(4), 1109–1119.PubMedCrossRef Gajos, K., Kaminska, A., Awsiuk, K., Bajor, A., Gruszczynski, K., Pawlak, A., et al. (2017). Immobilization and detection of platelet-derived extracellular vesicles on functionalized silicon substrate: Cytometric and spectrometric approach. Analytical and Bioanalytical Chemistry, 409(4), 1109–1119.PubMedCrossRef
141.
Zurück zum Zitat Rak, J. (2010). Microparticles in cancer. Seminars in Thrombosis and Hemostasis, 36(8), 888–906.PubMedCrossRef Rak, J. (2010). Microparticles in cancer. Seminars in Thrombosis and Hemostasis, 36(8), 888–906.PubMedCrossRef
142.
Zurück zum Zitat Kanikarla-Marie, P., Lam, M., Menter, D. G., & Kopetz, S. (2017). Platelets, circulating tumor cells, and the circulome. Cancer and Metastasis Reviews, 36(2), 235–248.PubMedCrossRef Kanikarla-Marie, P., Lam, M., Menter, D. G., & Kopetz, S. (2017). Platelets, circulating tumor cells, and the circulome. Cancer and Metastasis Reviews, 36(2), 235–248.PubMedCrossRef
143.
Zurück zum Zitat Kim, S., Carrillo, M., Radhakrishnan, U. P., & Jagadeeswaran, P. (2012). Role of zebrafish thrombocyte and non-thrombocyte microparticles in hemostasis. Blood Cells, Molecules, & Diseases, 48(3), 188–196.CrossRef Kim, S., Carrillo, M., Radhakrishnan, U. P., & Jagadeeswaran, P. (2012). Role of zebrafish thrombocyte and non-thrombocyte microparticles in hemostasis. Blood Cells, Molecules, & Diseases, 48(3), 188–196.CrossRef
144.
Zurück zum Zitat Jagadeeswaran, P., Carrillo, M., Radhakrishnan, U. P., Rajpurohit, S. K., & Kim, S. (2011). Laser-induced thrombosis in zebrafish. Methods in Cell Biology, 101, 197–203.PubMedCrossRef Jagadeeswaran, P., Carrillo, M., Radhakrishnan, U. P., Rajpurohit, S. K., & Kim, S. (2011). Laser-induced thrombosis in zebrafish. Methods in Cell Biology, 101, 197–203.PubMedCrossRef
145.
Zurück zum Zitat Mauler, M., Herr, N., Schoenichen, C., Witsch, T., Marchini, T., Hardtner, C., et al. (2019). Platelet serotonin aggravates myocardial ischemia/reperfusion injury via neutrophil degranulation. Circulation, 139(7), 918–931.PubMedPubMedCentralCrossRef Mauler, M., Herr, N., Schoenichen, C., Witsch, T., Marchini, T., Hardtner, C., et al. (2019). Platelet serotonin aggravates myocardial ischemia/reperfusion injury via neutrophil degranulation. Circulation, 139(7), 918–931.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Breckenridge, M. T., Egelhoff, T. T., & Baskaran, H. (2010). A microfluidic imaging chamber for the direct observation of chemotactic transmigration. Biomedical Microdevices, 12(3), 543–553.PubMedPubMedCentralCrossRef Breckenridge, M. T., Egelhoff, T. T., & Baskaran, H. (2010). A microfluidic imaging chamber for the direct observation of chemotactic transmigration. Biomedical Microdevices, 12(3), 543–553.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Ellingsen, T., Storgaard, M., Moller, B. K., Buus, A., Andersen, P. L., Obel, N., et al. (2000). Migration of mononuclear cells in the modified Boyden chamber as evaluated by DNA quantification and flow cytometry. Scandinavian Journal of Immunology, 52(3), 257–263.PubMedCrossRef Ellingsen, T., Storgaard, M., Moller, B. K., Buus, A., Andersen, P. L., Obel, N., et al. (2000). Migration of mononuclear cells in the modified Boyden chamber as evaluated by DNA quantification and flow cytometry. Scandinavian Journal of Immunology, 52(3), 257–263.PubMedCrossRef
148.
Zurück zum Zitat Friedl, P., Wolf, K., & Lammerding, J. (2011). Nuclear mechanics during cell migration. Current Opinion in Cell Biology, 23(1), 55–64.PubMedCrossRef Friedl, P., Wolf, K., & Lammerding, J. (2011). Nuclear mechanics during cell migration. Current Opinion in Cell Biology, 23(1), 55–64.PubMedCrossRef
149.
Zurück zum Zitat Bdeir, K., Gollomp, K., Stasiak, M., Mei, J., Papiewska-Pajak, I., Zhao, G., et al. (2017). Platelet-specific chemokines contribute to the pathogenesis of acute lung injury. American Journal of Respiratory Cell and Molecular Biology, 56(2), 261–270.PubMedPubMedCentralCrossRef Bdeir, K., Gollomp, K., Stasiak, M., Mei, J., Papiewska-Pajak, I., Zhao, G., et al. (2017). Platelet-specific chemokines contribute to the pathogenesis of acute lung injury. American Journal of Respiratory Cell and Molecular Biology, 56(2), 261–270.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Schmidt, E. M., Kraemer, B. F., Borst, O., Munzer, P., Schonberger, T., Schmidt, C., et al. (2012). SGK1 sensitivity of platelet migration. Cellular Physiology and Biochemistry, 30(1), 259–268.PubMedCrossRef Schmidt, E. M., Kraemer, B. F., Borst, O., Munzer, P., Schonberger, T., Schmidt, C., et al. (2012). SGK1 sensitivity of platelet migration. Cellular Physiology and Biochemistry, 30(1), 259–268.PubMedCrossRef
151.
Zurück zum Zitat Borisova, T. A., & Markosian, R. A. (1977). Age and biosynthesis and breakdown of thrombocyte proteins. Biulleten Eksperimentalnoi Biologii I Meditsiny, 83(1), 20–21. Borisova, T. A., & Markosian, R. A. (1977). Age and biosynthesis and breakdown of thrombocyte proteins. Biulleten Eksperimentalnoi Biologii I Meditsiny, 83(1), 20–21.
152.
Zurück zum Zitat Krakowka, S., Cork, L. C., Winkelstein, J. A., & Axthelm, M. K. (1987). Establishment of central nervous system infection by canine distemper virus: Breach of the blood-brain barrier and facilitation by antiviral antibody. Veterinary Immunology and Immunopathology, 17(1–4), 471–482.PubMedCrossRef Krakowka, S., Cork, L. C., Winkelstein, J. A., & Axthelm, M. K. (1987). Establishment of central nervous system infection by canine distemper virus: Breach of the blood-brain barrier and facilitation by antiviral antibody. Veterinary Immunology and Immunopathology, 17(1–4), 471–482.PubMedCrossRef
153.
Zurück zum Zitat Krakowka, S., Axthelm, M. K., & Gorham, J. R. (1987). Effects of induced thrombocytopenia on viral invasion of the central nervous system in canine distemper virus infection. Journal of Comparative Pathology, 97(4), 441–450.PubMedCrossRef Krakowka, S., Axthelm, M. K., & Gorham, J. R. (1987). Effects of induced thrombocytopenia on viral invasion of the central nervous system in canine distemper virus infection. Journal of Comparative Pathology, 97(4), 441–450.PubMedCrossRef
154.
Zurück zum Zitat Petito, E., Momi, S., & Gresele, P. (2017). The migration of platelets and their interaction with other migrating cells. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in Thrombotic and Non-Thrombotic Disorders (Vol. 2, pp. 337–351). Springer International Publishing.CrossRef Petito, E., Momi, S., & Gresele, P. (2017). The migration of platelets and their interaction with other migrating cells. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in Thrombotic and Non-Thrombotic Disorders (Vol. 2, pp. 337–351). Springer International Publishing.CrossRef
155.
Zurück zum Zitat Sandri, G., Bonferoni, M. C., Rossi, S., Ferrari, F., Mori, M., Cervio, M., et al. (2015). Platelet lysate embedded scaffolds for skin regeneration. Expert Opinion on Drug Delivery, 12(4), 525–545.PubMedCrossRef Sandri, G., Bonferoni, M. C., Rossi, S., Ferrari, F., Mori, M., Cervio, M., et al. (2015). Platelet lysate embedded scaffolds for skin regeneration. Expert Opinion on Drug Delivery, 12(4), 525–545.PubMedCrossRef
156.
Zurück zum Zitat Kurokawa, T., & Ohkohchi, N. (2017). Platelets in liver disease, cancer and regeneration. World Journal of Gastroenterology, 23(18), 3228–3239.PubMedPubMedCentralCrossRef Kurokawa, T., & Ohkohchi, N. (2017). Platelets in liver disease, cancer and regeneration. World Journal of Gastroenterology, 23(18), 3228–3239.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Mancuso, M. E., & Santagostino, E. (2017). Platelets: Much more than bricks in a breached wall. Br J Haematol Mancuso, M. E., & Santagostino, E. (2017). Platelets: Much more than bricks in a breached wall. Br J Haematol
158.
Zurück zum Zitat Anitua, E., Troya, M., Zalduendo, M., & Orive, G. (2017). Personalized plasma-based medicine to treat age-related diseases. Materials Science & Engineering, C: Materials for Biological Applications, 74, 459–464.CrossRef Anitua, E., Troya, M., Zalduendo, M., & Orive, G. (2017). Personalized plasma-based medicine to treat age-related diseases. Materials Science & Engineering, C: Materials for Biological Applications, 74, 459–464.CrossRef
159.
Zurück zum Zitat Meschi, N., Castro, A. B., Vandamme, K., Quirynen, M., & Lambrechts, P. (2016). The impact of autologous platelet concentrates on endodontic healing: A systematic review. Platelets, 27(7), 613–633.PubMedCrossRef Meschi, N., Castro, A. B., Vandamme, K., Quirynen, M., & Lambrechts, P. (2016). The impact of autologous platelet concentrates on endodontic healing: A systematic review. Platelets, 27(7), 613–633.PubMedCrossRef
160.
Zurück zum Zitat Mlynarek, R. A., Kuhn, A. W., & Bedi, A. (2016). Platelet-Rich Plasma (PRP) in Orthopedic Sports Medicine. American Journal of Orthopedics (Belle Mead, N.J.), 45(5), 290–326. Mlynarek, R. A., Kuhn, A. W., & Bedi, A. (2016). Platelet-Rich Plasma (PRP) in Orthopedic Sports Medicine. American Journal of Orthopedics (Belle Mead, N.J.), 45(5), 290–326.
161.
Zurück zum Zitat Koupenova, M., Corkrey, H. A., Vitseva, O., Manni, G., Pang, C. J., Clancy, L., et al. (2019). The role of platelets in mediating a response to human influenza infection. Nature Communications, 10(1), 1780.PubMedPubMedCentralCrossRef Koupenova, M., Corkrey, H. A., Vitseva, O., Manni, G., Pang, C. J., Clancy, L., et al. (2019). The role of platelets in mediating a response to human influenza infection. Nature Communications, 10(1), 1780.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Koupenova, M., Mick, E., Corkrey, H. A., Huan, T., Clancy, L., Shah, R., et al. (2018). Micro RNAs from DNA viruses are found widely in plasma in a large observational human population. Science and Reports, 8(1), 6397.CrossRef Koupenova, M., Mick, E., Corkrey, H. A., Huan, T., Clancy, L., Shah, R., et al. (2018). Micro RNAs from DNA viruses are found widely in plasma in a large observational human population. Science and Reports, 8(1), 6397.CrossRef
163.
Zurück zum Zitat Koupenova, M., Clancy, L., Corkrey, H. A., & Freedman, J. E. (2018). Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circulation Research, 122(2), 337–351.PubMedPubMedCentralCrossRef Koupenova, M., Clancy, L., Corkrey, H. A., & Freedman, J. E. (2018). Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circulation Research, 122(2), 337–351.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Goubran, H. A., Stakiw, J., Radosevic, M., & Burnouf, T. (2014). Platelets effects on tumor growth. Seminars in Oncology, 41(3), 359–369.PubMedCrossRef Goubran, H. A., Stakiw, J., Radosevic, M., & Burnouf, T. (2014). Platelets effects on tumor growth. Seminars in Oncology, 41(3), 359–369.PubMedCrossRef
165.
Zurück zum Zitat Unwith, S., Zhao, H., Hennah, L., & Ma, D. (2015). The potential role of HIF on tumour progression and dissemination. International Journal of Cancer, 136(11), 2491–2503.PubMedCrossRef Unwith, S., Zhao, H., Hennah, L., & Ma, D. (2015). The potential role of HIF on tumour progression and dissemination. International Journal of Cancer, 136(11), 2491–2503.PubMedCrossRef
166.
Zurück zum Zitat Kraemer, B. F., Borst, O., Gehring, E. M., Schoenberger, T., Urban, B., Ninci, E., et al. (2010). PI3 kinase-dependent stimulation of platelet migration by stromal cell-derived factor 1 (SDF-1). Journal of Molecular Medicine (Berlin, Germany), 88(12), 1277–1288.CrossRef Kraemer, B. F., Borst, O., Gehring, E. M., Schoenberger, T., Urban, B., Ninci, E., et al. (2010). PI3 kinase-dependent stimulation of platelet migration by stromal cell-derived factor 1 (SDF-1). Journal of Molecular Medicine (Berlin, Germany), 88(12), 1277–1288.CrossRef
167.
Zurück zum Zitat Brandt, E., Ludwig, A., Petersen, F., & Flad, H. D. (2000). Platelet-derived CXC chemokines: Old players in new games. Immunological Reviews, 177, 204–216.PubMedCrossRef Brandt, E., Ludwig, A., Petersen, F., & Flad, H. D. (2000). Platelet-derived CXC chemokines: Old players in new games. Immunological Reviews, 177, 204–216.PubMedCrossRef
168.
Zurück zum Zitat Kraemer, B. F., Schmidt, C., Urban, B., Bigalke, B., Schwanitz, L., Koch, M., et al. (2011). High shear flow induces migration of adherent human platelets. Platelets, 22(6), 415–421.PubMedCrossRef Kraemer, B. F., Schmidt, C., Urban, B., Bigalke, B., Schwanitz, L., Koch, M., et al. (2011). High shear flow induces migration of adherent human platelets. Platelets, 22(6), 415–421.PubMedCrossRef
169.
Zurück zum Zitat Chatterjee, M., Huang, Z., Zhang, W., Jiang, L., Hultenby, K., Zhu, L., et al. (2011). Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood, 117(14), 3907–3911.PubMedCrossRef Chatterjee, M., Huang, Z., Zhang, W., Jiang, L., Hultenby, K., Zhu, L., et al. (2011). Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood, 117(14), 3907–3911.PubMedCrossRef
170.
Zurück zum Zitat Shenkman, B., Brill, A., Brill, G., Lider, O., Savion, N., & Varon, D. (2004). Differential response of platelets to chemokines: RANTES non-competitively inhibits stimulatory effect of SDF-1 alpha. Journal of Thrombosis and Haemostasis, 2(1), 154–160.PubMedCrossRef Shenkman, B., Brill, A., Brill, G., Lider, O., Savion, N., & Varon, D. (2004). Differential response of platelets to chemokines: RANTES non-competitively inhibits stimulatory effect of SDF-1 alpha. Journal of Thrombosis and Haemostasis, 2(1), 154–160.PubMedCrossRef
171.
Zurück zum Zitat Gleissner, C. A., von Hundelshausen, P., & Ley, K. (2008). Platelet chemokines in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(11), 1920–1927.PubMedPubMedCentralCrossRef Gleissner, C. A., von Hundelshausen, P., & Ley, K. (2008). Platelet chemokines in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(11), 1920–1927.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Clemetson, K. J., Clemetson, J. M., Proudfoot, A. E., Power, C. A., Baggiolini, M., & Wells, T. N. (2000). Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood, 96(13), 4046–4054.PubMedCrossRef Clemetson, K. J., Clemetson, J. M., Proudfoot, A. E., Power, C. A., Baggiolini, M., & Wells, T. N. (2000). Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood, 96(13), 4046–4054.PubMedCrossRef
173.
174.
Zurück zum Zitat He, L., Zhang, A., Pei, Y., Chu, P., Li, Y., Huang, R., et al. (2017). Differences in responses of grass carp to different types of grass carp reovirus (GCRV) and the mechanism of hemorrhage revealed by transcriptome sequencing. BMC Genomics, 18(1), 452.PubMedPubMedCentralCrossRef He, L., Zhang, A., Pei, Y., Chu, P., Li, Y., Huang, R., et al. (2017). Differences in responses of grass carp to different types of grass carp reovirus (GCRV) and the mechanism of hemorrhage revealed by transcriptome sequencing. BMC Genomics, 18(1), 452.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Mutoloki, S., Brudeseth, B., Reite, O. B., & Evensen, O. (2006). The contribution of Aeromonas salmonicida extracellular products to the induction of inflammation in Atlantic salmon (Salmo salar L.) following vaccination with oil-based vaccines. Fish Shellfish Immunol, 20(1), 1–11. Mutoloki, S., Brudeseth, B., Reite, O. B., & Evensen, O. (2006). The contribution of Aeromonas salmonicida extracellular products to the induction of inflammation in Atlantic salmon (Salmo salar L.) following vaccination with oil-based vaccines. Fish Shellfish Immunol, 20(1), 1–11.
176.
Zurück zum Zitat Mutoloki, S., Reite, O. B., Brudeseth, B., Tverdal, A., & Evensen, O. (2006). A comparative immunopathological study of injection site reactions in salmonids following intraperitoneal injection with oil-adjuvanted vaccines. Vaccine, 24(5), 578–588.PubMedCrossRef Mutoloki, S., Reite, O. B., Brudeseth, B., Tverdal, A., & Evensen, O. (2006). A comparative immunopathological study of injection site reactions in salmonids following intraperitoneal injection with oil-adjuvanted vaccines. Vaccine, 24(5), 578–588.PubMedCrossRef
177.
Zurück zum Zitat Reite, O. B., & Evensen, O. (2006). Inflammatory cells of teleostean fish: A review focusing on mast cells/eosinophilic granule cells and rodlet cells. Fish & Shellfish Immunology, 20(2), 192–208.CrossRef Reite, O. B., & Evensen, O. (2006). Inflammatory cells of teleostean fish: A review focusing on mast cells/eosinophilic granule cells and rodlet cells. Fish & Shellfish Immunology, 20(2), 192–208.CrossRef
178.
Zurück zum Zitat Chen, H., Ji, T., Chen, J., & Li, X. (2019). Matrix solid-phase dispersion combined with HPLC-DAD for simultaneous determination of nine lignans in Saururus chinensis. Journal of Chromatographic Science, 57(2), 186–193.PubMedCrossRef Chen, H., Ji, T., Chen, J., & Li, X. (2019). Matrix solid-phase dispersion combined with HPLC-DAD for simultaneous determination of nine lignans in Saururus chinensis. Journal of Chromatographic Science, 57(2), 186–193.PubMedCrossRef
179.
Zurück zum Zitat Yuan, D., Zou, Q., Yu, T., Song, C., Huang, S., Chen, S., et al. (2014). Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. Biochimica et Biophysica Acta, 1841(9), 1272–1284.PubMedCrossRef Yuan, D., Zou, Q., Yu, T., Song, C., Huang, S., Chen, S., et al. (2014). Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. Biochimica et Biophysica Acta, 1841(9), 1272–1284.PubMedCrossRef
180.
Zurück zum Zitat Havird, J. C., Miyamoto, M. M., Choe, K. P., & Evans, D. H. (2008). Gene duplications and losses within the cyclooxygenase family of teleosts and other chordates. Molecular Biology and Evolution, 25(11), 2349–2359.PubMedCrossRef Havird, J. C., Miyamoto, M. M., Choe, K. P., & Evans, D. H. (2008). Gene duplications and losses within the cyclooxygenase family of teleosts and other chordates. Molecular Biology and Evolution, 25(11), 2349–2359.PubMedCrossRef
181.
Zurück zum Zitat Dangel, O., Mergia, E., Karlisch, K., Groneberg, D., Koesling, D., & Friebe, A. (2010). Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition. Journal of Thrombosis and Haemostasis, 8(6), 1343–1352.PubMedCrossRef Dangel, O., Mergia, E., Karlisch, K., Groneberg, D., Koesling, D., & Friebe, A. (2010). Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition. Journal of Thrombosis and Haemostasis, 8(6), 1343–1352.PubMedCrossRef
182.
Zurück zum Zitat Koziak, K., Sevigny, J., Robson, S. C., Siegel, J. B., & Kaczmarek, E. (1999). Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thrombosis and Haemostasis, 82(5), 1538–1544.PubMedCrossRef Koziak, K., Sevigny, J., Robson, S. C., Siegel, J. B., & Kaczmarek, E. (1999). Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thrombosis and Haemostasis, 82(5), 1538–1544.PubMedCrossRef
183.
Zurück zum Zitat Moncada, S., Gryglewski, R., Bunting, S., & Vane, J. R. (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263(5579), 663–665.PubMedCrossRef Moncada, S., Gryglewski, R., Bunting, S., & Vane, J. R. (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263(5579), 663–665.PubMedCrossRef
184.
Zurück zum Zitat Sabetkar, M., Naseem, K. M., Tullett, J. M., Friebe, A., Koesling, D., & Bruckdorfer, K. R. (2001). Synergism between nitric oxide and hydrogen peroxide in the inhibition of platelet function: The roles of soluble guanylyl cyclase and vasodilator-stimulated phosphoprotein. Nitric Oxide, 5(3), 233–242.PubMedCrossRef Sabetkar, M., Naseem, K. M., Tullett, J. M., Friebe, A., Koesling, D., & Bruckdorfer, K. R. (2001). Synergism between nitric oxide and hydrogen peroxide in the inhibition of platelet function: The roles of soluble guanylyl cyclase and vasodilator-stimulated phosphoprotein. Nitric Oxide, 5(3), 233–242.PubMedCrossRef
185.
Zurück zum Zitat Zimmermann, H. (1999). Nucleotides and cd39: Principal modulatory players in hemostasis and thrombosis. Nature Medicine, 5(9), 987–988.PubMedCrossRef Zimmermann, H. (1999). Nucleotides and cd39: Principal modulatory players in hemostasis and thrombosis. Nature Medicine, 5(9), 987–988.PubMedCrossRef
186.
Zurück zum Zitat O'Brien, M. P., Hunt, P. W., Kitch, D. W., Klingman, K., Stein, J. H., Funderburg, N. T., et al. (2017). A randomized placebo controlled trial of aspirin effects on immune activation in chronically human immunodeficiency virus-infected adults on virologically suppressive antiretroviral therapy. Open Forum Infect Dis, 4(1), ofw278. O'Brien, M. P., Hunt, P. W., Kitch, D. W., Klingman, K., Stein, J. H., Funderburg, N. T., et al. (2017). A randomized placebo controlled trial of aspirin effects on immune activation in chronically human immunodeficiency virus-infected adults on virologically suppressive antiretroviral therapy. Open Forum Infect Dis, 4(1), ofw278.
187.
Zurück zum Zitat O’Brien, M., Montenont, E., Hu, L., Nardi, M. A., Valdes, V., Merolla, M., et al. (2013). Aspirin attenuates platelet activation and immune activation in HIV-1-infected subjects on antiretroviral therapy: A pilot study. Journal of Acquired Immune Deficiency Syndromes, 63(3), 280–288.PubMedCrossRef O’Brien, M., Montenont, E., Hu, L., Nardi, M. A., Valdes, V., Merolla, M., et al. (2013). Aspirin attenuates platelet activation and immune activation in HIV-1-infected subjects on antiretroviral therapy: A pilot study. Journal of Acquired Immune Deficiency Syndromes, 63(3), 280–288.PubMedCrossRef
188.
Zurück zum Zitat Loelius, S. G., Lannan, K. L., Blumberg, N., Phipps, R. P., & Spinelli, S. L. (2018). The HIV protease inhibitor, ritonavir, dysregulates human platelet function in vitro. Thrombosis Research, 169, 96–104.PubMedPubMedCentralCrossRef Loelius, S. G., Lannan, K. L., Blumberg, N., Phipps, R. P., & Spinelli, S. L. (2018). The HIV protease inhibitor, ritonavir, dysregulates human platelet function in vitro. Thrombosis Research, 169, 96–104.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Hammarstrom, S. (1982). Biosynthesis and biological actions of prostaglandins and thromboxanes. Archives of Biochemistry and Biophysics, 214(2), 431–445.PubMedCrossRef Hammarstrom, S. (1982). Biosynthesis and biological actions of prostaglandins and thromboxanes. Archives of Biochemistry and Biophysics, 214(2), 431–445.PubMedCrossRef
190.
Zurück zum Zitat Antal, A., Gecse, A., Mojzes, L., & Foldes, V. (1985). Arachidonate cascade in the platelets of influenza virus infected mice. Acta Med Leg Soc (Liege), 35(2), 1–7. Antal, A., Gecse, A., Mojzes, L., & Foldes, V. (1985). Arachidonate cascade in the platelets of influenza virus infected mice. Acta Med Leg Soc (Liege), 35(2), 1–7.
191.
Zurück zum Zitat Feletou, M., Huang, Y., & Vanhoutte, P. M. (2010). Vasoconstrictor prostanoids. Pflugers Archiv. European Journal of Physiology, 459(6), 941–950.PubMedCrossRef Feletou, M., Huang, Y., & Vanhoutte, P. M. (2010). Vasoconstrictor prostanoids. Pflugers Archiv. European Journal of Physiology, 459(6), 941–950.PubMedCrossRef
192.
Zurück zum Zitat Kandhi, S., Zhang, B., Froogh, G., Qin, J., Alruwali, N., Le, Y., et al. (2017). EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids. Am J Physiol Lung Cell Mol Physiol, 00038, 02017. Kandhi, S., Zhang, B., Froogh, G., Qin, J., Alruwali, N., Le, Y., et al. (2017). EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids. Am J Physiol Lung Cell Mol Physiol, 00038, 02017.
193.
Zurück zum Zitat Bhagwat, S. S., Hamann, P. R., Still, W. C., Bunting, S., & Fitzpatrick, F. A. (1985). Synthesis and structure of the platelet aggregation factor thromboxane A2. Nature, 315(6019), 511–513.PubMedCrossRef Bhagwat, S. S., Hamann, P. R., Still, W. C., Bunting, S., & Fitzpatrick, F. A. (1985). Synthesis and structure of the platelet aggregation factor thromboxane A2. Nature, 315(6019), 511–513.PubMedCrossRef
194.
Zurück zum Zitat Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A, 72(8), 2994–2998.PubMedPubMedCentralCrossRef Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A, 72(8), 2994–2998.PubMedPubMedCentralCrossRef
195.
Zurück zum Zitat Gawaz, M., & Vogel, S. (2013). Platelets in tissue repair: Control of apoptosis and interactions with regenerative cells. Blood, 122(15), 2550–2554.PubMedCrossRef Gawaz, M., & Vogel, S. (2013). Platelets in tissue repair: Control of apoptosis and interactions with regenerative cells. Blood, 122(15), 2550–2554.PubMedCrossRef
196.
Zurück zum Zitat Fukami, M. H., & Salganicoff, L. (1977). Human platelet storage organelles. A review. Thromb Haemost, 38(4), 963–970.PubMedCrossRef Fukami, M. H., & Salganicoff, L. (1977). Human platelet storage organelles. A review. Thromb Haemost, 38(4), 963–970.PubMedCrossRef
197.
Zurück zum Zitat Koseoglu, S., & Flaumenhaft, R. (2013). Advances in platelet granule biology. Current Opinion in Hematology, 20(5), 464–471.PubMedCrossRef Koseoglu, S., & Flaumenhaft, R. (2013). Advances in platelet granule biology. Current Opinion in Hematology, 20(5), 464–471.PubMedCrossRef
198.
Zurück zum Zitat Wihlborg, A. K., Wang, L., Braun, O. O., Eyjolfsson, A., Gustafsson, R., Gudbjartsson, T., et al. (2004). ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(10), 1810–1815.PubMedCrossRef Wihlborg, A. K., Wang, L., Braun, O. O., Eyjolfsson, A., Gustafsson, R., Gudbjartsson, T., et al. (2004). ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(10), 1810–1815.PubMedCrossRef
199.
Zurück zum Zitat Vanags, D. M., Rodgers, S. E., Duncan, E. M., Lloyd, J. V., & Bochner, F. (1992). Potentiation of ADP-induced aggregation in human platelet-rich plasma by 5-hydroxytryptamine and adrenaline. British Journal of Pharmacology, 106(4), 917–923.PubMedPubMedCentralCrossRef Vanags, D. M., Rodgers, S. E., Duncan, E. M., Lloyd, J. V., & Bochner, F. (1992). Potentiation of ADP-induced aggregation in human platelet-rich plasma by 5-hydroxytryptamine and adrenaline. British Journal of Pharmacology, 106(4), 917–923.PubMedPubMedCentralCrossRef
200.
Zurück zum Zitat Marketou, M. E., Kintsurashvili, E., Androulakis, N. E., Kontaraki, J., Alexandrakis, M. G., Gavras, I., et al. (2013). Blockade of platelet alpha2B-adrenergic receptors: A novel antiaggregant mechanism. International Journal of Cardiology, 168(3), 2561–2566.PubMedCrossRef Marketou, M. E., Kintsurashvili, E., Androulakis, N. E., Kontaraki, J., Alexandrakis, M. G., Gavras, I., et al. (2013). Blockade of platelet alpha2B-adrenergic receptors: A novel antiaggregant mechanism. International Journal of Cardiology, 168(3), 2561–2566.PubMedCrossRef
201.
Zurück zum Zitat Ponomarev, E. D. (2018). Fresh evidence for platelets as neuronal and innate immune cells: Their role in the activation, differentiation, and deactivation of Th1, Th17, and Tregs during tissue inflammation. Frontiers in Immunology, 9, 406.PubMedPubMedCentralCrossRef Ponomarev, E. D. (2018). Fresh evidence for platelets as neuronal and innate immune cells: Their role in the activation, differentiation, and deactivation of Th1, Th17, and Tregs during tissue inflammation. Frontiers in Immunology, 9, 406.PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat Luo, P., Liu, D., & Li, J. (2020). Epinephrine use in COVID-19: Friend or foe? Eur J Hosp Pharm Luo, P., Liu, D., & Li, J. (2020). Epinephrine use in COVID-19: Friend or foe? Eur J Hosp Pharm
203.
Zurück zum Zitat Belamarich, F. A., Fusari, M. H., Shepro, D., & Kien, M. (1966). In vitro studies of aggregation of non-mammalian thrombocytes. Nature, 212(5070), 1579–1580.PubMedCrossRef Belamarich, F. A., Fusari, M. H., Shepro, D., & Kien, M. (1966). In vitro studies of aggregation of non-mammalian thrombocytes. Nature, 212(5070), 1579–1580.PubMedCrossRef
204.
Zurück zum Zitat Chen, W., Tang, D., Xu, Y., Zou, Y., Sui, W., Dai, Y., et al. (2018). Comprehensive analysis of lysine crotonylation in proteome of maintenance hemodialysis patients. Medicine (Baltimore), 97(37), e12035. Chen, W., Tang, D., Xu, Y., Zou, Y., Sui, W., Dai, Y., et al. (2018). Comprehensive analysis of lysine crotonylation in proteome of maintenance hemodialysis patients. Medicine (Baltimore), 97(37), e12035.
205.
Zurück zum Zitat Stritt, S., Beck, S., Becker, I. C., Vogtle, T., Hakala, M., Heinze, K. G., et al. (2017). Twinfilin 2a regulates platelet reactivity and turnover in mice. Blood, 130(15), 1746–1756.PubMedCrossRef Stritt, S., Beck, S., Becker, I. C., Vogtle, T., Hakala, M., Heinze, K. G., et al. (2017). Twinfilin 2a regulates platelet reactivity and turnover in mice. Blood, 130(15), 1746–1756.PubMedCrossRef
206.
Zurück zum Zitat Hui, H., Fuller, K. A., Erber, W. N., & Linden, M. D. (2017). Imaging flow cytometry in the assessment of leukocyte-platelet aggregates. Methods, 112, 46–54.PubMedCrossRef Hui, H., Fuller, K. A., Erber, W. N., & Linden, M. D. (2017). Imaging flow cytometry in the assessment of leukocyte-platelet aggregates. Methods, 112, 46–54.PubMedCrossRef
207.
Zurück zum Zitat Lowe, K. L., Finney, B. A., Deppermann, C., Hagerling, R., Gazit, S. L., Frampton, J., et al. (2015). Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood, 125(24), 3769–3777.PubMedPubMedCentralCrossRef Lowe, K. L., Finney, B. A., Deppermann, C., Hagerling, R., Gazit, S. L., Frampton, J., et al. (2015). Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development. Blood, 125(24), 3769–3777.PubMedPubMedCentralCrossRef
208.
Zurück zum Zitat Qiu, Y., Brown, A. C., Myers, D. R., Sakurai, Y., Mannino, R. G., Tran, R., et al. (2014). Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc Natl Acad Sci U S A, 111(40), 14430–14435.PubMedPubMedCentralCrossRef Qiu, Y., Brown, A. C., Myers, D. R., Sakurai, Y., Mannino, R. G., Tran, R., et al. (2014). Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc Natl Acad Sci U S A, 111(40), 14430–14435.PubMedPubMedCentralCrossRef
209.
Zurück zum Zitat Peerschke, E. I., Reid, K. B., & Ghebrehiwet, B. (1993). Platelet activation by C1q results in the induction of alpha IIb/beta 3 integrins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity. Journal of Experimental Medicine, 178(2), 579–587.CrossRef Peerschke, E. I., Reid, K. B., & Ghebrehiwet, B. (1993). Platelet activation by C1q results in the induction of alpha IIb/beta 3 integrins (GPIIb-IIIa) and the expression of P-selectin and procoagulant activity. Journal of Experimental Medicine, 178(2), 579–587.CrossRef
210.
Zurück zum Zitat Bevilacqua, M. P., Stengelin, S., Gimbrone, M. A., Jr., & Seed, B. (1989). Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science, 243(4895), 1160–1165.PubMedCrossRef Bevilacqua, M. P., Stengelin, S., Gimbrone, M. A., Jr., & Seed, B. (1989). Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science, 243(4895), 1160–1165.PubMedCrossRef
211.
Zurück zum Zitat Menter, D. G., Steinert, B. W., Sloane, B. F., Gundlach, N., O’Gara, C. Y., Marnett, L. J., et al. (1987). Role of platelet membrane in enhancement of tumor cell adhesion to endothelial cell extracellular matrix. Cancer Research, 47(24 Pt 1), 6751–6762.PubMed Menter, D. G., Steinert, B. W., Sloane, B. F., Gundlach, N., O’Gara, C. Y., Marnett, L. J., et al. (1987). Role of platelet membrane in enhancement of tumor cell adhesion to endothelial cell extracellular matrix. Cancer Research, 47(24 Pt 1), 6751–6762.PubMed
212.
Zurück zum Zitat Menter, D. G., Sloane, B. F., Steinert, B. W., Onoda, J., Craig, R., Harkins, C., et al. (1987). Platelet enhancement of tumor cell adhesion to subendothelial matrix: Role of platelet cytoskeleton and platelet membrane. Journal of the National Cancer Institute, 79(5), 1077–1090.PubMed Menter, D. G., Sloane, B. F., Steinert, B. W., Onoda, J., Craig, R., Harkins, C., et al. (1987). Platelet enhancement of tumor cell adhesion to subendothelial matrix: Role of platelet cytoskeleton and platelet membrane. Journal of the National Cancer Institute, 79(5), 1077–1090.PubMed
213.
Zurück zum Zitat Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280 e278. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280 e278.
214.
Zurück zum Zitat Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., et al. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., et al. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature
215.
Zurück zum Zitat Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., et al. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., et al. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature
216.
Zurück zum Zitat Sun, S., Cai, X., Wang, H., He, G., Lin, Y., Lu, B., et al. (2020). Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clinica Chimica Acta, 507, 174–180.CrossRef Sun, S., Cai, X., Wang, H., He, G., Lin, Y., Lu, B., et al. (2020). Abnormalities of peripheral blood system in patients with COVID-19 in Wenzhou, China. Clinica Chimica Acta, 507, 174–180.CrossRef
217.
Zurück zum Zitat Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., et al. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263.PubMedPubMedCentralCrossRef Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., et al. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263.PubMedPubMedCentralCrossRef
218.
Zurück zum Zitat Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444–1448.PubMedPubMedCentralCrossRef Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444–1448.PubMedPubMedCentralCrossRef
219.
Zurück zum Zitat Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., et al. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet, 395(10234), 1417–1418.PubMedPubMedCentralCrossRef Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., et al. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet, 395(10234), 1417–1418.PubMedPubMedCentralCrossRef
220.
Zurück zum Zitat Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., et al. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., et al. (2020). Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med
221.
Zurück zum Zitat Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., van de Veen, W., Bruggen, M. C., et al. (2020). Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., van de Veen, W., Bruggen, M. C., et al. (2020). Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy
222.
Zurück zum Zitat Nunes Duarte-Neto, A., de Almeida Monteiro, R. A., da Silva, L. F. F., Malheiros, D., de Oliveira, E. P., Theodoro Filho, J., et al. (2020). Pulmonary and systemic involvement of COVID-19 assessed by ultrasound-guided minimally invasive autopsy. Histopathology Nunes Duarte-Neto, A., de Almeida Monteiro, R. A., da Silva, L. F. F., Malheiros, D., de Oliveira, E. P., Theodoro Filho, J., et al. (2020). Pulmonary and systemic involvement of COVID-19 assessed by ultrasound-guided minimally invasive autopsy. Histopathology
223.
Zurück zum Zitat O’Sullivan, J., Mc Gonagle, D., Ward, S., Preston, R., & O’Donnell, J. (2020). Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol, 30215 O’Sullivan, J., Mc Gonagle, D., Ward, S., Preston, R., & O’Donnell, J. (2020). Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol, 30215
224.
Zurück zum Zitat Barton, L., Duval, E., Stroberg, E., Ghosh, S., & Mukhopadhyay, S. (2020). COVID-19 Autopsies, Oklahoma, USA. American Journal of Clinical Pathology, 153, 725–733.PubMedCrossRef Barton, L., Duval, E., Stroberg, E., Ghosh, S., & Mukhopadhyay, S. (2020). COVID-19 Autopsies, Oklahoma, USA. American Journal of Clinical Pathology, 153, 725–733.PubMedCrossRef
225.
Zurück zum Zitat Matacic, C. (2020). Blood vessel injury may spur disease’s fatal second phase. Science, 368(6495), 1039–1040.PubMedCrossRef Matacic, C. (2020). Blood vessel injury may spur disease’s fatal second phase. Science, 368(6495), 1039–1040.PubMedCrossRef
226.
Zurück zum Zitat Hay, S. B., Ferchen, K., Chetal, K., Grimes, H. L., & Salomonis, N. (2018). The Human Cell Atlas bone marrow single-cell interactive web portal. Experimental Hematology, 68, 51–61.PubMedPubMedCentralCrossRef Hay, S. B., Ferchen, K., Chetal, K., Grimes, H. L., & Salomonis, N. (2018). The Human Cell Atlas bone marrow single-cell interactive web portal. Experimental Hematology, 68, 51–61.PubMedPubMedCentralCrossRef
227.
Zurück zum Zitat Tikhonova, A. N., Dolgalev, I., Hu, H., Sivaraj, K. K., Hoxha, E., Cuesta-Dominguez, A., et al. (2019). The bone marrow microenvironment at single-cell resolution. Nature, 569(7755), 222–228.PubMedPubMedCentralCrossRef Tikhonova, A. N., Dolgalev, I., Hu, H., Sivaraj, K. K., Hoxha, E., Cuesta-Dominguez, A., et al. (2019). The bone marrow microenvironment at single-cell resolution. Nature, 569(7755), 222–228.PubMedPubMedCentralCrossRef
228.
Zurück zum Zitat Rossaint, J., & Zarbock, A. (2015). Platelets in leucocyte recruitment and function. Cardiovasc Res Rossaint, J., & Zarbock, A. (2015). Platelets in leucocyte recruitment and function. Cardiovasc Res
229.
Zurück zum Zitat Garraud, O., Berthet, J., Hamzeh-Cognasse, H., & Cognasse, F. (2011). Pathogen sensing, subsequent signalling, and signalosome in human platelets. Thrombosis Research, 127(4), 283–286.PubMedCrossRef Garraud, O., Berthet, J., Hamzeh-Cognasse, H., & Cognasse, F. (2011). Pathogen sensing, subsequent signalling, and signalosome in human platelets. Thrombosis Research, 127(4), 283–286.PubMedCrossRef
230.
Zurück zum Zitat von Hundelshausen, P., & Weber, C. (2007). Platelets as immune cells: Bridging inflammation and cardiovascular disease. Circulation Research, 100(1), 27–40.CrossRef von Hundelshausen, P., & Weber, C. (2007). Platelets as immune cells: Bridging inflammation and cardiovascular disease. Circulation Research, 100(1), 27–40.CrossRef
231.
Zurück zum Zitat D’Atri, L. P., Etulain, J., Rivadeneyra, L., Lapponi, M. J., Centurion, M., Cheng, K., et al. (2015). Expression and functionality of Toll-like receptor 3 in the megakaryocytic lineage. Journal of Thrombosis and Haemostasis, 13(5), 839–850.PubMedCrossRef D’Atri, L. P., Etulain, J., Rivadeneyra, L., Lapponi, M. J., Centurion, M., Cheng, K., et al. (2015). Expression and functionality of Toll-like receptor 3 in the megakaryocytic lineage. Journal of Thrombosis and Haemostasis, 13(5), 839–850.PubMedCrossRef
232.
Zurück zum Zitat Kullaya, V. I., de Mast, Q., van der Ven, A., elMoussaoui, H., Kibiki, G., Simonetti, E., et al. (2017). Platelets modulate innate immune response against human respiratory syncytial virus in vitro. Viral Immunology, 30(8), 576–581.PubMedCrossRef Kullaya, V. I., de Mast, Q., van der Ven, A., elMoussaoui, H., Kibiki, G., Simonetti, E., et al. (2017). Platelets modulate innate immune response against human respiratory syncytial virus in vitro. Viral Immunology, 30(8), 576–581.PubMedCrossRef
233.
Zurück zum Zitat LP, D. A., & Schattner, M. (2017). Platelet toll-like receptors in thromboinflammation. Front Biosci (Landmark Ed), 22, 1867–1883.CrossRef LP, D. A., & Schattner, M. (2017). Platelet toll-like receptors in thromboinflammation. Front Biosci (Landmark Ed), 22, 1867–1883.CrossRef
234.
Zurück zum Zitat Thon, J. N., Peters, C. G., Machlus, K. R., Aslam, R., Rowley, J., Macleod, H., et al. (2012). T granules in human platelets function in TLR9 organization and signaling. Journal of Cell Biology, 198(4), 561–574.CrossRef Thon, J. N., Peters, C. G., Machlus, K. R., Aslam, R., Rowley, J., Macleod, H., et al. (2012). T granules in human platelets function in TLR9 organization and signaling. Journal of Cell Biology, 198(4), 561–574.CrossRef
235.
Zurück zum Zitat Rath, D., Chatterjee, M., Borst, O., Muller, K., Langer, H., Mack, A. F., et al. (2015). Platelet surface expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 is associated with clinical outcomes in patients with coronary artery disease. Journal of Thrombosis and Haemostasis, 13(5), 719–728.PubMedCrossRef Rath, D., Chatterjee, M., Borst, O., Muller, K., Langer, H., Mack, A. F., et al. (2015). Platelet surface expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 is associated with clinical outcomes in patients with coronary artery disease. Journal of Thrombosis and Haemostasis, 13(5), 719–728.PubMedCrossRef
236.
Zurück zum Zitat Rafii, S., Cao, Z., Lis, R., Siempos, I. I., Chavez, D., Shido, K., et al. (2015). Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 17(2), 123–136.PubMedPubMedCentralCrossRef Rafii, S., Cao, Z., Lis, R., Siempos, I. I., Chavez, D., Shido, K., et al. (2015). Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 17(2), 123–136.PubMedPubMedCentralCrossRef
237.
Zurück zum Zitat Chatterjee, M., Seizer, P., Borst, O., Schonberger, T., Mack, A., Geisler, T., et al. (2014). SDF-1alpha induces differential trafficking of CXCR4-CXCR7 involving cyclophilin A, CXCR7 ubiquitination and promotes platelet survival. The FASEB Journal, 28(7), 2864–2878.PubMedCrossRef Chatterjee, M., Seizer, P., Borst, O., Schonberger, T., Mack, A., Geisler, T., et al. (2014). SDF-1alpha induces differential trafficking of CXCR4-CXCR7 involving cyclophilin A, CXCR7 ubiquitination and promotes platelet survival. The FASEB Journal, 28(7), 2864–2878.PubMedCrossRef
238.
Zurück zum Zitat Rath, D., Chatterjee, M., Borst, O., Muller, K., Stellos, K., Mack, A. F., et al. (2014). Expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 on circulating platelets of patients with acute coronary syndrome and association with left ventricular functional recovery. European Heart Journal, 35(6), 386–394.PubMedCrossRef Rath, D., Chatterjee, M., Borst, O., Muller, K., Stellos, K., Mack, A. F., et al. (2014). Expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 on circulating platelets of patients with acute coronary syndrome and association with left ventricular functional recovery. European Heart Journal, 35(6), 386–394.PubMedCrossRef
239.
Zurück zum Zitat Iannacone, M. (2016). Platelet-mediated modulation of adaptive immunity. Seminars in Immunology, 28(6), 555–560.PubMedCrossRef Iannacone, M. (2016). Platelet-mediated modulation of adaptive immunity. Seminars in Immunology, 28(6), 555–560.PubMedCrossRef
240.
Zurück zum Zitat Danese, S., & Fiocchi, C. (2016). Endothelial cell-immune cell interaction in IBD. Digestive Diseases, 34(1–2), 43–50.PubMedCrossRef Danese, S., & Fiocchi, C. (2016). Endothelial cell-immune cell interaction in IBD. Digestive Diseases, 34(1–2), 43–50.PubMedCrossRef
241.
Zurück zum Zitat Chatterjee, M., & Geisler, T. (2016). Inflammatory contribution of platelets revisited: New players in the arena of inflammation. Seminars in Thrombosis and Hemostasis, 42(3), 205–214.PubMedCrossRef Chatterjee, M., & Geisler, T. (2016). Inflammatory contribution of platelets revisited: New players in the arena of inflammation. Seminars in Thrombosis and Hemostasis, 42(3), 205–214.PubMedCrossRef
242.
Zurück zum Zitat Carestia, A., Kaufman, T., & Schattner, M. (2016). Platelets: New bricks in the building of neutrophil extracellular traps. Frontiers in Immunology, 7, 271.PubMedPubMedCentralCrossRef Carestia, A., Kaufman, T., & Schattner, M. (2016). Platelets: New bricks in the building of neutrophil extracellular traps. Frontiers in Immunology, 7, 271.PubMedPubMedCentralCrossRef
243.
Zurück zum Zitat Lam, F. W., Vijayan, K. V., & Rumbaut, R. E. (2015). Platelets and their interactions with other immune cells. Comprehensive Physiology, 5(3), 1265–1280.PubMedPubMedCentralCrossRef Lam, F. W., Vijayan, K. V., & Rumbaut, R. E. (2015). Platelets and their interactions with other immune cells. Comprehensive Physiology, 5(3), 1265–1280.PubMedPubMedCentralCrossRef
244.
Zurück zum Zitat Kapur, R., Zufferey, A., Boilard, E., & Semple, J. W. (2015). Nouvelle cuisine: Platelets served with inflammation. The Journal of Immunology, 194(12), 5579–5587.PubMedCrossRef Kapur, R., Zufferey, A., Boilard, E., & Semple, J. W. (2015). Nouvelle cuisine: Platelets served with inflammation. The Journal of Immunology, 194(12), 5579–5587.PubMedCrossRef
245.
Zurück zum Zitat Cognasse, F., Nguyen, K. A., Damien, P., McNicol, A., Pozzetto, B., Hamzeh-Cognasse, H., et al. (2015). The inflammatory role of platelets via their TLRs and Siglec receptors. Frontiers in Immunology, 6, 83.PubMedPubMedCentralCrossRef Cognasse, F., Nguyen, K. A., Damien, P., McNicol, A., Pozzetto, B., Hamzeh-Cognasse, H., et al. (2015). The inflammatory role of platelets via their TLRs and Siglec receptors. Frontiers in Immunology, 6, 83.PubMedPubMedCentralCrossRef
246.
Zurück zum Zitat Chatterjee, M., Rath, D., & Gawaz, M. (2015). Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochemical Society Transactions, 43(4), 720–726.PubMedCrossRef Chatterjee, M., Rath, D., & Gawaz, M. (2015). Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochemical Society Transactions, 43(4), 720–726.PubMedCrossRef
247.
Zurück zum Zitat Coburn, L. A., Damaraju, V. S., Dozic, S., Eskin, S. G., Cruz, M. A., & McIntire, L. V. (2011). GPIbalpha-vWF rolling under shear stress shows differences between type 2B and 2M von Willebrand disease. Biophysical Journal, 100(2), 304–312.PubMedPubMedCentralCrossRef Coburn, L. A., Damaraju, V. S., Dozic, S., Eskin, S. G., Cruz, M. A., & McIntire, L. V. (2011). GPIbalpha-vWF rolling under shear stress shows differences between type 2B and 2M von Willebrand disease. Biophysical Journal, 100(2), 304–312.PubMedPubMedCentralCrossRef
248.
Zurück zum Zitat Colace, T. V., & Diamond, S. L. (2013). Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(1), 105–113.PubMedCrossRef Colace, T. V., & Diamond, S. L. (2013). Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(1), 105–113.PubMedCrossRef
249.
Zurück zum Zitat Fredrickson, B. J., Dong, J. F., McIntire, L. V., & Lopez, J. A. (1998). Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood, 92(10), 3684–3693.PubMedCrossRef Fredrickson, B. J., Dong, J. F., McIntire, L. V., & Lopez, J. A. (1998). Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood, 92(10), 3684–3693.PubMedCrossRef
250.
Zurück zum Zitat Jackson, S. P., Mistry, N., & Yuan, Y. (2000). Platelets and the injured vessel wall– “rolling into action”: Focus on glycoprotein Ib/V/IX and the platelet cytoskeleton. Trends in Cardiovascular Medicine, 10(5), 192–197.PubMedCrossRef Jackson, S. P., Mistry, N., & Yuan, Y. (2000). Platelets and the injured vessel wall– “rolling into action”: Focus on glycoprotein Ib/V/IX and the platelet cytoskeleton. Trends in Cardiovascular Medicine, 10(5), 192–197.PubMedCrossRef
251.
Zurück zum Zitat Yago, T., Lou, J., Wu, T., Yang, J., Miner, J. J., Coburn, L., et al. (2008). Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. The Journal of Clinical Investigation, 118(9), 3195–3207.PubMedPubMedCentral Yago, T., Lou, J., Wu, T., Yang, J., Miner, J. J., Coburn, L., et al. (2008). Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. The Journal of Clinical Investigation, 118(9), 3195–3207.PubMedPubMedCentral
252.
Zurück zum Zitat Coller, B. S., & Shattil, S. J. (2008). The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: A technology-driven saga of a receptor with twists, turns, and even a bend. Blood, 112(8), 3011–3025.PubMedPubMedCentralCrossRef Coller, B. S., & Shattil, S. J. (2008). The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: A technology-driven saga of a receptor with twists, turns, and even a bend. Blood, 112(8), 3011–3025.PubMedPubMedCentralCrossRef
253.
Zurück zum Zitat Kim, C., & Kim, M. C. (2013). Differences in alpha-beta transmembrane domain interactions among integrins enable diverging integrin signaling. Biochemical and Biophysical Research Communications, 436(3), 406–412.PubMedCrossRef Kim, C., & Kim, M. C. (2013). Differences in alpha-beta transmembrane domain interactions among integrins enable diverging integrin signaling. Biochemical and Biophysical Research Communications, 436(3), 406–412.PubMedCrossRef
254.
Zurück zum Zitat Kim, C., Lau, T. L., Ulmer, T. S., & Ginsberg, M. H. (2009). Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood, 113(19), 4747–4753.PubMedPubMedCentralCrossRef Kim, C., Lau, T. L., Ulmer, T. S., & Ginsberg, M. H. (2009). Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood, 113(19), 4747–4753.PubMedPubMedCentralCrossRef
255.
Zurück zum Zitat Shattil, S. J. (2009). The beta3 integrin cytoplasmic tail: Protein scaffold and control freak. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 210–213.PubMedCrossRef Shattil, S. J. (2009). The beta3 integrin cytoplasmic tail: Protein scaffold and control freak. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 210–213.PubMedCrossRef
256.
Zurück zum Zitat Assinger, A., Kral, J. B., Yaiw, K. C., Schrottmaier, W. C., Kurzejamska, E., Wang, Y., et al. (2014). Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent proinflammatory and proangiogenic responses. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(4), 801–809.PubMedCrossRef Assinger, A., Kral, J. B., Yaiw, K. C., Schrottmaier, W. C., Kurzejamska, E., Wang, Y., et al. (2014). Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent proinflammatory and proangiogenic responses. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(4), 801–809.PubMedCrossRef
257.
Zurück zum Zitat Nelsen-Salz, B., Eggers, H. J., & Zimmermann, H. (1999). Integrin alpha(v)beta3 (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. Journal of General Virology, 80(Pt 9), 2311–2313.CrossRef Nelsen-Salz, B., Eggers, H. J., & Zimmermann, H. (1999). Integrin alpha(v)beta3 (vitronectin receptor) is a candidate receptor for the virulent echovirus 9 strain Barty. Journal of General Virology, 80(Pt 9), 2311–2313.CrossRef
258.
Zurück zum Zitat Bruning, A., Kohler, T., Quist, S., Wang-Gohrke, S., Moebus, V. J., Kreienberg, R., et al. (2001). Adenoviral transduction efficiency of ovarian cancer cells can be limited by loss of integrin beta3 subunit expression and increased by reconstitution of integrin alphavbeta3. Human Gene Therapy, 12(4), 391–399.PubMedCrossRef Bruning, A., Kohler, T., Quist, S., Wang-Gohrke, S., Moebus, V. J., Kreienberg, R., et al. (2001). Adenoviral transduction efficiency of ovarian cancer cells can be limited by loss of integrin beta3 subunit expression and increased by reconstitution of integrin alphavbeta3. Human Gene Therapy, 12(4), 391–399.PubMedCrossRef
259.
Zurück zum Zitat Chabert, A., Hamzeh-Cognasse, H., Pozzetto, B., Cognasse, F., Schattner, M., Gomez, R. M., et al. (2015). Human platelets and their capacity of binding viruses: Meaning and challenges? BMC Immunology, 16, 26.PubMedPubMedCentralCrossRef Chabert, A., Hamzeh-Cognasse, H., Pozzetto, B., Cognasse, F., Schattner, M., Gomez, R. M., et al. (2015). Human platelets and their capacity of binding viruses: Meaning and challenges? BMC Immunology, 16, 26.PubMedPubMedCentralCrossRef
260.
Zurück zum Zitat Vilela, M. C., Lima, G. K., Rodrigues, D. H., Lacerda-Queiroz, N., Pedroso, V. S., de Miranda, A. S., et al. (2016). Platelet Activating Factor (PAF) Receptor Deletion or Antagonism Attenuates Severe HSV-1 Meningoencephalitis. Journal of Neuroimmune Pharmacology, 11(4), 613–621.PubMedCrossRef Vilela, M. C., Lima, G. K., Rodrigues, D. H., Lacerda-Queiroz, N., Pedroso, V. S., de Miranda, A. S., et al. (2016). Platelet Activating Factor (PAF) Receptor Deletion or Antagonism Attenuates Severe HSV-1 Meningoencephalitis. Journal of Neuroimmune Pharmacology, 11(4), 613–621.PubMedCrossRef
261.
Zurück zum Zitat Fleming, F. E., Graham, K. L., Takada, Y., & Coulson, B. S. (2011). Determinants of the specificity of rotavirus interactions with the alpha2beta1 integrin. Journal of Biological Chemistry, 286(8), 6165–6174.CrossRef Fleming, F. E., Graham, K. L., Takada, Y., & Coulson, B. S. (2011). Determinants of the specificity of rotavirus interactions with the alpha2beta1 integrin. Journal of Biological Chemistry, 286(8), 6165–6174.CrossRef
262.
Zurück zum Zitat Bergmeier, W., & Stefanini, L. (2013). Platelet ITAM signaling. Current Opinion in Hematology, 20(5), 445–450.PubMedCrossRef Bergmeier, W., & Stefanini, L. (2013). Platelet ITAM signaling. Current Opinion in Hematology, 20(5), 445–450.PubMedCrossRef
263.
Zurück zum Zitat Ozaki, Y., Suzuki-Inoue, K., & Inoue, O. (2013). Platelet receptors activated via mulitmerization: Glycoprotein VI, GPIb-IX-V, and CLEC-2. Journal of Thrombosis and Haemostasis, 11(Suppl 1), 330–339.PubMedCrossRef Ozaki, Y., Suzuki-Inoue, K., & Inoue, O. (2013). Platelet receptors activated via mulitmerization: Glycoprotein VI, GPIb-IX-V, and CLEC-2. Journal of Thrombosis and Haemostasis, 11(Suppl 1), 330–339.PubMedCrossRef
264.
Zurück zum Zitat Zahid, M., Mangin, P., Loyau, S., Hechler, B., Billiald, P., Gachet, C., et al. (2012). The future of glycoprotein VI as an antithrombotic target. Journal of Thrombosis and Haemostasis, 10(12), 2418–2427.PubMedCrossRef Zahid, M., Mangin, P., Loyau, S., Hechler, B., Billiald, P., Gachet, C., et al. (2012). The future of glycoprotein VI as an antithrombotic target. Journal of Thrombosis and Haemostasis, 10(12), 2418–2427.PubMedCrossRef
265.
Zurück zum Zitat Takemoto, A., Okitaka, M., Takagi, S., Takami, M., Sato, S., Nishio, M., et al. (2017). A critical role of platelet TGF-beta release in podoplanin-mediated tumour invasion and metastasis. Science and Reports, 7, 42186.CrossRef Takemoto, A., Okitaka, M., Takagi, S., Takami, M., Sato, S., Nishio, M., et al. (2017). A critical role of platelet TGF-beta release in podoplanin-mediated tumour invasion and metastasis. Science and Reports, 7, 42186.CrossRef
266.
Zurück zum Zitat Nakazawa, Y., Sato, S., Naito, M., Kato, Y., Mishima, K., Arai, H., et al. (2008). Tetraspanin family member CD9 inhibits Aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood, 112(5), 1730–1739.PubMedCrossRef Nakazawa, Y., Sato, S., Naito, M., Kato, Y., Mishima, K., Arai, H., et al. (2008). Tetraspanin family member CD9 inhibits Aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood, 112(5), 1730–1739.PubMedCrossRef
267.
Zurück zum Zitat Navarro-Nunez, L., Langan, S. A., Nash, G. B., & Watson, S. P. (2013). The physiological and pathophysiological roles of platelet CLEC-2. Thrombosis and Haemostasis, 109(6), 991–998.PubMedPubMedCentralCrossRef Navarro-Nunez, L., Langan, S. A., Nash, G. B., & Watson, S. P. (2013). The physiological and pathophysiological roles of platelet CLEC-2. Thrombosis and Haemostasis, 109(6), 991–998.PubMedPubMedCentralCrossRef
268.
Zurück zum Zitat Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., et al. (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 107(2), 542–549.PubMedCrossRef Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., et al. (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 107(2), 542–549.PubMedCrossRef
269.
Zurück zum Zitat Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. Journal of Biological Chemistry, 282(36), 25993–26001.CrossRef Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. Journal of Biological Chemistry, 282(36), 25993–26001.CrossRef
270.
Zurück zum Zitat Pula, B., Witkiewicz, W., Dziegiel, P., & Podhorska-Okolow, M. (2013). Significance of podoplanin expression in cancer-associated fibroblasts: A comprehensive review. International Journal of Oncology, 42(6), 1849–1857.PubMedCrossRef Pula, B., Witkiewicz, W., Dziegiel, P., & Podhorska-Okolow, M. (2013). Significance of podoplanin expression in cancer-associated fibroblasts: A comprehensive review. International Journal of Oncology, 42(6), 1849–1857.PubMedCrossRef
271.
Zurück zum Zitat Gitz, E., Pollitt, A. Y., Gitz-Francois, J. J., Alshehri, O., Mori, J., Montague, S., et al. (2014). CLEC-2 expression is maintained on activated platelets and on platelet microparticles. Blood, 124(14), 2262–2270.PubMedPubMedCentralCrossRef Gitz, E., Pollitt, A. Y., Gitz-Francois, J. J., Alshehri, O., Mori, J., Montague, S., et al. (2014). CLEC-2 expression is maintained on activated platelets and on platelet microparticles. Blood, 124(14), 2262–2270.PubMedPubMedCentralCrossRef
272.
Zurück zum Zitat Golda, A., Malek, N., Dudek, B., Zeglen, S., Wojarski, J., Ochman, M., et al. (2011). Infection with human coronavirus NL63 enhances streptococcal adherence to epithelial cells. Journal of General Virology, 92(Pt 6), 1358–1368.CrossRef Golda, A., Malek, N., Dudek, B., Zeglen, S., Wojarski, J., Ochman, M., et al. (2011). Infection with human coronavirus NL63 enhances streptococcal adherence to epithelial cells. Journal of General Virology, 92(Pt 6), 1358–1368.CrossRef
273.
274.
Zurück zum Zitat Johnston, G. I., Cook, R. G., & McEver, R. P. (1989). Cloning of GMP-140, a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation. Cell, 56(6), 1033–1044.PubMedCrossRef Johnston, G. I., Cook, R. G., & McEver, R. P. (1989). Cloning of GMP-140, a granule membrane protein of platelets and endothelium: Sequence similarity to proteins involved in cell adhesion and inflammation. Cell, 56(6), 1033–1044.PubMedCrossRef
275.
Zurück zum Zitat Stenberg, P. E., McEver, R. P., Shuman, M. A., Jacques, Y. V., & Bainton, D. F. (1985). A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. Journal of Cell Biology, 101(3), 880–886.CrossRef Stenberg, P. E., McEver, R. P., Shuman, M. A., Jacques, Y. V., & Bainton, D. F. (1985). A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. Journal of Cell Biology, 101(3), 880–886.CrossRef
276.
Zurück zum Zitat Zarbock, A., Muller, H., Kuwano, Y., & Ley, K. (2009). PSGL-1-dependent myeloid leukocyte activation. Journal of Leukocyte Biology, 86(5), 1119–1124.PubMedCrossRef Zarbock, A., Muller, H., Kuwano, Y., & Ley, K. (2009). PSGL-1-dependent myeloid leukocyte activation. Journal of Leukocyte Biology, 86(5), 1119–1124.PubMedCrossRef
277.
Zurück zum Zitat Picker, L. J., Warnock, R. A., Burns, A. R., Doerschuk, C. M., Berg, E. L., & Butcher, E. C. (1991). The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell, 66(5), 921–933.PubMedCrossRef Picker, L. J., Warnock, R. A., Burns, A. R., Doerschuk, C. M., Berg, E. L., & Butcher, E. C. (1991). The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell, 66(5), 921–933.PubMedCrossRef
278.
Zurück zum Zitat Polley, M. J., Phillips, M. L., Wayner, E., Nudelman, E., Singhal, A. K., Hakomori, S., et al. (1991). CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc Natl Acad Sci U S A, 88(14), 6224–6228.PubMedPubMedCentralCrossRef Polley, M. J., Phillips, M. L., Wayner, E., Nudelman, E., Singhal, A. K., Hakomori, S., et al. (1991). CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc Natl Acad Sci U S A, 88(14), 6224–6228.PubMedPubMedCentralCrossRef
279.
Zurück zum Zitat Foxall, C., Watson, S. R., Dowbenko, D., Fennie, C., Lasky, L. A., Kiso, M., et al. (1992). The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. Journal of Cell Biology, 117(4), 895–902.CrossRef Foxall, C., Watson, S. R., Dowbenko, D., Fennie, C., Lasky, L. A., Kiso, M., et al. (1992). The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. Journal of Cell Biology, 117(4), 895–902.CrossRef
280.
Zurück zum Zitat Habets, K. L., Huizinga, T. W., & Toes, R. E. (2013). Platelets and autoimmunity. European Journal of Clinical Investigation, 43(7), 746–757.PubMedCrossRef Habets, K. L., Huizinga, T. W., & Toes, R. E. (2013). Platelets and autoimmunity. European Journal of Clinical Investigation, 43(7), 746–757.PubMedCrossRef
281.
Zurück zum Zitat Kazmi, R. S., Cooper, A. J., & Lwaleed, B. A. (2011). Platelet function in pre-eclampsia. Seminars in Thrombosis and Hemostasis, 37(2), 131–136.PubMedCrossRef Kazmi, R. S., Cooper, A. J., & Lwaleed, B. A. (2011). Platelet function in pre-eclampsia. Seminars in Thrombosis and Hemostasis, 37(2), 131–136.PubMedCrossRef
282.
Zurück zum Zitat Nurden, A. T. (2011). Platelets, inflammation and tissue regeneration. Thrombosis and Haemostasis, 105(Suppl 1), S13-33.PubMed Nurden, A. T. (2011). Platelets, inflammation and tissue regeneration. Thrombosis and Haemostasis, 105(Suppl 1), S13-33.PubMed
283.
Zurück zum Zitat Negrotto, S., Jaquenod de Giusti, C., Rivadeneyra, L., Ure, A. E., Mena, H. A., Schattner, M., et al. (2015). Platelets interact with Coxsackieviruses B and have a critical role in the pathogenesis of virus-induced myocarditis. Journal of Thrombosis and Haemostasis, 13(2), 271–282.PubMedCrossRef Negrotto, S., Jaquenod de Giusti, C., Rivadeneyra, L., Ure, A. E., Mena, H. A., Schattner, M., et al. (2015). Platelets interact with Coxsackieviruses B and have a critical role in the pathogenesis of virus-induced myocarditis. Journal of Thrombosis and Haemostasis, 13(2), 271–282.PubMedCrossRef
284.
Zurück zum Zitat Moore, K. L., Varki, A., & McEver, R. P. (1991). GMP-140 binds to a glycoprotein receptor on human neutrophils: Evidence for a lectin-like interaction. Journal of Cell Biology, 112(3), 491–499.CrossRef Moore, K. L., Varki, A., & McEver, R. P. (1991). GMP-140 binds to a glycoprotein receptor on human neutrophils: Evidence for a lectin-like interaction. Journal of Cell Biology, 112(3), 491–499.CrossRef
285.
Zurück zum Zitat Borsig, L. (2008). The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 8(8), 1247–1255.PubMedCrossRef Borsig, L. (2008). The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 8(8), 1247–1255.PubMedCrossRef
286.
Zurück zum Zitat Dammacco, F., Vacca, A., Procaccio, P., Ria, R., Marech, I., & Racanelli, V. (2013). Cancer-related coagulopathy (Trousseau’s syndrome): Review of the literature and experience of a single center of internal medicine. Clinical and Experimental Medicine, 13(2), 85–97.PubMedCrossRef Dammacco, F., Vacca, A., Procaccio, P., Ria, R., Marech, I., & Racanelli, V. (2013). Cancer-related coagulopathy (Trousseau’s syndrome): Review of the literature and experience of a single center of internal medicine. Clinical and Experimental Medicine, 13(2), 85–97.PubMedCrossRef
287.
Zurück zum Zitat Erpenbeck, L., & Schon, M. P. (2010). Deadly allies: The fatal interplay between platelets and metastasizing cancer cells. Blood, 115(17), 3427–3436.PubMedPubMedCentralCrossRef Erpenbeck, L., & Schon, M. P. (2010). Deadly allies: The fatal interplay between platelets and metastasizing cancer cells. Blood, 115(17), 3427–3436.PubMedPubMedCentralCrossRef
288.
289.
Zurück zum Zitat Gay, L. J., & Felding-Habermann, B. (2011). Platelets alter tumor cell attributes to propel metastasis: Programming in transit. Cancer Cell, 20(5), 553–554.PubMedCrossRef Gay, L. J., & Felding-Habermann, B. (2011). Platelets alter tumor cell attributes to propel metastasis: Programming in transit. Cancer Cell, 20(5), 553–554.PubMedCrossRef
290.
Zurück zum Zitat Kyriazi, V., & Theodoulou, E. (2013). Assessing the risk and prognosis of thrombotic complications in cancer patients. Archives of Pathology and Laboratory Medicine, 137(9), 1286–1295.PubMedCrossRef Kyriazi, V., & Theodoulou, E. (2013). Assessing the risk and prognosis of thrombotic complications in cancer patients. Archives of Pathology and Laboratory Medicine, 137(9), 1286–1295.PubMedCrossRef
291.
Zurück zum Zitat McEver, R. P. (1997). Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconjugate Journal, 14(5), 585–591.PubMedCrossRef McEver, R. P. (1997). Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconjugate Journal, 14(5), 585–591.PubMedCrossRef
292.
Zurück zum Zitat Arnout, J., Hoylaerts, M. F., & Lijnen, H. R. (2006). Haemostasis. Handb Exp Pharmacol(176 Pt 2), 1–41. Arnout, J., Hoylaerts, M. F., & Lijnen, H. R. (2006). Haemostasis. Handb Exp Pharmacol(176 Pt 2), 1–41.
293.
Zurück zum Zitat Gaitzsch, E., Czermak, T., Ribeiro, A., Heun, Y., Bohmer, M., Merkle, M., et al. (2017). Double-stranded DNA induces a prothrombotic phenotype in the vascular endothelium. Science and Reports, 7(1), 1112.CrossRef Gaitzsch, E., Czermak, T., Ribeiro, A., Heun, Y., Bohmer, M., Merkle, M., et al. (2017). Double-stranded DNA induces a prothrombotic phenotype in the vascular endothelium. Science and Reports, 7(1), 1112.CrossRef
294.
Zurück zum Zitat Antoniak, S., Boltzen, U., Riad, A., Kallwellis-Opara, A., Rohde, M., Dorner, A., et al. (2008). Viral myocarditis and coagulopathy: Increased tissue factor expression and plasma thrombogenicity. Journal of Molecular and Cellular Cardiology, 45(1), 118–126.PubMedCrossRef Antoniak, S., Boltzen, U., Riad, A., Kallwellis-Opara, A., Rohde, M., Dorner, A., et al. (2008). Viral myocarditis and coagulopathy: Increased tissue factor expression and plasma thrombogenicity. Journal of Molecular and Cellular Cardiology, 45(1), 118–126.PubMedCrossRef
295.
Zurück zum Zitat Dang, O., Navarro, L., & David, M. (2004). Inhibition of lipopolysaccharide-induced interferon regulatory factor 3 activation and protection from septic shock by hydroxystilbenes. Shock, 21(5), 470–475.PubMedPubMedCentralCrossRef Dang, O., Navarro, L., & David, M. (2004). Inhibition of lipopolysaccharide-induced interferon regulatory factor 3 activation and protection from septic shock by hydroxystilbenes. Shock, 21(5), 470–475.PubMedPubMedCentralCrossRef
296.
Zurück zum Zitat Visseren, F. L., Bouwman, J. J., Bouter, K. P., Diepersloot, R. J., de Groot, P. H., & Erkelens, D. W. (2000). Procoagulant activity of endothelial cells after infection with respiratory viruses. Thrombosis and Haemostasis, 84(2), 319–324.PubMed Visseren, F. L., Bouwman, J. J., Bouter, K. P., Diepersloot, R. J., de Groot, P. H., & Erkelens, D. W. (2000). Procoagulant activity of endothelial cells after infection with respiratory viruses. Thrombosis and Haemostasis, 84(2), 319–324.PubMed
297.
Zurück zum Zitat Amgalan, A., & Othman, M. (2020). Exploring possible mechanisms for COVID-19 induced thrombocytopenia: Unanswered questions. Journal of Thrombosis and Haemostasis, 18(6), 1514–1516.PubMedCrossRef Amgalan, A., & Othman, M. (2020). Exploring possible mechanisms for COVID-19 induced thrombocytopenia: Unanswered questions. Journal of Thrombosis and Haemostasis, 18(6), 1514–1516.PubMedCrossRef
298.
Zurück zum Zitat Chan, J. F., Yuan, S., Kok, K. H., To, K. K., Chu, H., Yang, J., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395(10223), 514–523.PubMedPubMedCentralCrossRef Chan, J. F., Yuan, S., Kok, K. H., To, K. K., Chu, H., Yang, J., et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395(10223), 514–523.PubMedPubMedCentralCrossRef
299.
Zurück zum Zitat Giannis, D., Ziogas, I. A., & Gianni, P. (2020). Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol, 127, 104362. Giannis, D., Ziogas, I. A., & Gianni, P. (2020). Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol, 127, 104362.
300.
Zurück zum Zitat Lippi, G., Plebani, M., & Henry, B. M. (2020). Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clinica Chimica Acta, 506, 145–148.CrossRef Lippi, G., Plebani, M., & Henry, B. M. (2020). Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clinica Chimica Acta, 506, 145–148.CrossRef
301.
Zurück zum Zitat Misra, D. P., Agarwal, V., Gasparyan, A. Y., & Zimba, O. (2020). Rheumatologists' perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol Misra, D. P., Agarwal, V., Gasparyan, A. Y., & Zimba, O. (2020). Rheumatologists' perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol
302.
Zurück zum Zitat Rasmussen, S. A., Smulian, J. C., Lednicky, J. A., Wen, T. S., & Jamieson, D. J. (2020). Coronavirus disease 2019 (COVID-19) and pregnancy: What obstetricians need to know. Am J Obstet Gynecol Rasmussen, S. A., Smulian, J. C., Lednicky, J. A., Wen, T. S., & Jamieson, D. J. (2020). Coronavirus disease 2019 (COVID-19) and pregnancy: What obstetricians need to know. Am J Obstet Gynecol
303.
Zurück zum Zitat Sri Santosh, T., Parmar, R., Anand, H., Srikanth, K., & Saritha, M. (2020). A review of salivary diagnostics and its potential implication in detection of Covid-19. Cureus, 12(4), e7708. Sri Santosh, T., Parmar, R., Anand, H., Srikanth, K., & Saritha, M. (2020). A review of salivary diagnostics and its potential implication in detection of Covid-19. Cureus, 12(4), e7708.
304.
Zurück zum Zitat Terpos, E., Ntanasis-Stathopoulos, I., Elalamy, I., Kastritis, E., Sergentanis, T. N., Politou, M., et al. (2020). Hematological findings and complications of COVID-19. Am J Hematol Terpos, E., Ntanasis-Stathopoulos, I., Elalamy, I., Kastritis, E., Sergentanis, T. N., Politou, M., et al. (2020). Hematological findings and complications of COVID-19. Am J Hematol
305.
Zurück zum Zitat Xu, P., Zhou, Q., & Xu, J. (2020). Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol Xu, P., Zhou, Q., & Xu, J. (2020). Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol
306.
Zurück zum Zitat Yang, X., Yang, Q., Wang, Y., Wu, Y., Xu, J., Yu, Y., et al. (2020). Thrombocytopenia and its association with mortality in patients with COVID-19. J Thromb Haemost Yang, X., Yang, Q., Wang, Y., Wu, Y., Xu, J., Yu, Y., et al. (2020). Thrombocytopenia and its association with mortality in patients with COVID-19. J Thromb Haemost
307.
Zurück zum Zitat Sundaramoorthi, H., Panapakam, R., & Jagadeeswaran, P. (2015). Zebrafish thrombocyte aggregation by whole blood aggregometry and flow cytometry. Platelets, 26(7), 613–619.PubMedCrossRef Sundaramoorthi, H., Panapakam, R., & Jagadeeswaran, P. (2015). Zebrafish thrombocyte aggregation by whole blood aggregometry and flow cytometry. Platelets, 26(7), 613–619.PubMedCrossRef
308.
Zurück zum Zitat Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F., & Dvorak, A. M. (1998). Platelets exit venules by a transcellular pathway at sites of F-met peptide-induced acute inflammation in guinea pigs. International Archives of Allergy and Immunology, 116(3), 188–195.PubMedCrossRef Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F., & Dvorak, A. M. (1998). Platelets exit venules by a transcellular pathway at sites of F-met peptide-induced acute inflammation in guinea pigs. International Archives of Allergy and Immunology, 116(3), 188–195.PubMedCrossRef
309.
Zurück zum Zitat Lowenhaupt, R. W., Glueck, H. I., Miller, M. A., & Kline, D. L. (1977). Factors which influence blood platelet migration. Journal of Laboratory and Clinical Medicine, 90(1), 37–45. Lowenhaupt, R. W., Glueck, H. I., Miller, M. A., & Kline, D. L. (1977). Factors which influence blood platelet migration. Journal of Laboratory and Clinical Medicine, 90(1), 37–45.
310.
Zurück zum Zitat Nathan, P. (1973). The migration of human platelets in vitro. Thrombosis et Diathesis Haemorrhagica, 30(1), 173–177.PubMed Nathan, P. (1973). The migration of human platelets in vitro. Thrombosis et Diathesis Haemorrhagica, 30(1), 173–177.PubMed
311.
Zurück zum Zitat Schmidt, E. M., Munzer, P., Borst, O., Kraemer, B. F., Schmid, E., Urban, B., et al. (2011). Ion channels in the regulation of platelet migration. Biochemical and Biophysical Research Communications, 415(1), 54–60.PubMedCrossRef Schmidt, E. M., Munzer, P., Borst, O., Kraemer, B. F., Schmid, E., Urban, B., et al. (2011). Ion channels in the regulation of platelet migration. Biochemical and Biophysical Research Communications, 415(1), 54–60.PubMedCrossRef
312.
Zurück zum Zitat Iba, T., Levy, J. H., Levi, M., Connors, J. M., & Thachil, J. (2020). Coagulopathy of Coronavirus Disease 2019. Crit Care Med Iba, T., Levy, J. H., Levi, M., Connors, J. M., & Thachil, J. (2020). Coagulopathy of Coronavirus Disease 2019. Crit Care Med
313.
Zurück zum Zitat Levi, M., Thachil, J., Iba, T., & Levy, J. H. (2020). Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol, 7(6), e438–e440.PubMedPubMedCentralCrossRef Levi, M., Thachil, J., Iba, T., & Levy, J. H. (2020). Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol, 7(6), e438–e440.PubMedPubMedCentralCrossRef
314.
Zurück zum Zitat The Lancet, H. (2020). COVID-19 coagulopathy: an evolving story. Lancet Haematol, 7(6), e425. The Lancet, H. (2020). COVID-19 coagulopathy: an evolving story. Lancet Haematol, 7(6), e425.
315.
Zurück zum Zitat Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. Lancet, 395(10223), 497–506.PubMedCrossRef Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. Lancet, 395(10223), 497–506.PubMedCrossRef
316.
Zurück zum Zitat Bellosta, R., Luzzani, L., Natalini, G., Pegorer, M. A., Attisani, L., Cossu, L. G., et al. (2020). Acute limb ischemia in patients with COVID-19 pneumonia. J Vasc Surg Bellosta, R., Luzzani, L., Natalini, G., Pegorer, M. A., Attisani, L., Cossu, L. G., et al. (2020). Acute limb ischemia in patients with COVID-19 pneumonia. J Vasc Surg
317.
Zurück zum Zitat Rogers, L. C., Lavery, L. A., Joseph, W. S., & Armstrong, D. G. (2020). All Feet On Deck-The Role of Podiatry During the COVID-19 Pandemic: Preventing hospitalizations in an overburdened healthcare system, reducing amputation and death in people with diabetes. J Am Podiatr Med Assoc Rogers, L. C., Lavery, L. A., Joseph, W. S., & Armstrong, D. G. (2020). All Feet On Deck-The Role of Podiatry During the COVID-19 Pandemic: Preventing hospitalizations in an overburdened healthcare system, reducing amputation and death in people with diabetes. J Am Podiatr Med Assoc
318.
Zurück zum Zitat Baracchini, C., Pieroni, A., Viaro, F., Cianci, V., Cattelan, A. M., Tiberio, I., et al. (2020). Acute stroke management pathway during Coronavirus-19 pandemic. Neurological Sciences, 41(5), 1003–1005.PubMedCrossRef Baracchini, C., Pieroni, A., Viaro, F., Cianci, V., Cattelan, A. M., Tiberio, I., et al. (2020). Acute stroke management pathway during Coronavirus-19 pandemic. Neurological Sciences, 41(5), 1003–1005.PubMedCrossRef
319.
Zurück zum Zitat Beyrouti, R., Adams, M. E., Benjamin, L., Cohen, H., Farmer, S. F., Goh, Y. Y., et al. (2020). Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry Beyrouti, R., Adams, M. E., Benjamin, L., Cohen, H., Farmer, S. F., Goh, Y. Y., et al. (2020). Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry
320.
Zurück zum Zitat Calcagno, N., Colombo, E., Maranzano, A., Pasquini, J., Keller Sarmiento, I. J., Trogu, F., et al. (2020). Rising evidence for neurological involvement in COVID-19 pandemic. Neurol Sci Calcagno, N., Colombo, E., Maranzano, A., Pasquini, J., Keller Sarmiento, I. J., Trogu, F., et al. (2020). Rising evidence for neurological involvement in COVID-19 pandemic. Neurol Sci
321.
Zurück zum Zitat Kansagra, A. P., Goyal, M. S., Hamilton, S., & Albers, G. W. (2020). Collateral effect of Covid-19 on stroke evaluation in the United States. N Engl J Med Kansagra, A. P., Goyal, M. S., Hamilton, S., & Albers, G. W. (2020). Collateral effect of Covid-19 on stroke evaluation in the United States. N Engl J Med
322.
Zurück zum Zitat Larson, A. S., Savastano, L., Kadirvel, R., Kallmes, D. F., Hassan, A. E., & Brinjikji, W. (2020). COVID-19 and the cerebro-cardiovascular systems: What do we know so far? J Am Heart Assoc, e016793. Larson, A. S., Savastano, L., Kadirvel, R., Kallmes, D. F., Hassan, A. E., & Brinjikji, W. (2020). COVID-19 and the cerebro-cardiovascular systems: What do we know so far? J Am Heart Assoc, e016793.
323.
Zurück zum Zitat Oxley, T. J., Mocco, J., Majidi, S., Kellner, C. P., Shoirah, H., Singh, I. P., et al. (2020). Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med, 382(20), e60. Oxley, T. J., Mocco, J., Majidi, S., Kellner, C. P., Shoirah, H., Singh, I. P., et al. (2020). Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med, 382(20), e60.
324.
Zurück zum Zitat Valderrama, E. V., Humbert, K., Lord, A., Frontera, J., & Yaghi, S. (2020). Severe acute respiratory syndrome coronavirus 2 infection and ischemic stroke. Stroke, STROKEAHA120030153. Valderrama, E. V., Humbert, K., Lord, A., Frontera, J., & Yaghi, S. (2020). Severe acute respiratory syndrome coronavirus 2 infection and ischemic stroke. Stroke, STROKEAHA120030153.
325.
Zurück zum Zitat Viguier, A., Delamarre, L., Duplantier, J., Olivot, J. M., & Bonneville, F. (2020). Acute ischemic stroke complicating common carotid artery thrombosis during a severe COVID-19 infection. J Neuroradiol Viguier, A., Delamarre, L., Duplantier, J., Olivot, J. M., & Bonneville, F. (2020). Acute ischemic stroke complicating common carotid artery thrombosis during a severe COVID-19 infection. J Neuroradiol
326.
Zurück zum Zitat Zhou, Y., Yasumoto, A., Lei, C., Huang, C. J., Kobayashi, H., Wu, Y., et al. (2020). Intelligent classification of platelet aggregates by agonist type. Elife, 9 Zhou, Y., Yasumoto, A., Lei, C., Huang, C. J., Kobayashi, H., Wu, Y., et al. (2020). Intelligent classification of platelet aggregates by agonist type. Elife, 9
327.
Zurück zum Zitat Dong, X., Cao, Y. Y., Lu, X. X., Zhang, J. J., Du, H., Yan, Y. Q., et al. (2020). Eleven faces of coronavirus disease 2019. Allergy Dong, X., Cao, Y. Y., Lu, X. X., Zhang, J. J., Du, H., Yan, Y. Q., et al. (2020). Eleven faces of coronavirus disease 2019. Allergy
328.
Zurück zum Zitat Li, N., Wang, X., & Lv, T. (2020). Prolonged SARS-CoV-2 RNA shedding: Not a rare phenomenon. J Med Virol Li, N., Wang, X., & Lv, T. (2020). Prolonged SARS-CoV-2 RNA shedding: Not a rare phenomenon. J Med Virol
329.
Zurück zum Zitat Long, Q. X., Liu, B. Z., Deng, H. J., Wu, G. C., Deng, K., Chen, Y. K., et al. (2020). Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med Long, Q. X., Liu, B. Z., Deng, H. J., Wu, G. C., Deng, K., Chen, Y. K., et al. (2020). Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med
330.
Zurück zum Zitat Qu, J., Wu, C., Li, X., Zhang, G., Jiang, Z., Li, X., et al. (2020). Profile of IgG and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis Qu, J., Wu, C., Li, X., Zhang, G., Jiang, Z., Li, X., et al. (2020). Profile of IgG and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis
331.
Zurück zum Zitat Xiang, F., Wang, X., He, X., Peng, Z., Yang, B., Zhang, J., et al. (2020). Antibody detection and dynamic characteristics in patients with COVID-19. Clin Infect Dis Xiang, F., Wang, X., He, X., Peng, Z., Yang, B., Zhang, J., et al. (2020). Antibody detection and dynamic characteristics in patients with COVID-19. Clin Infect Dis
332.
Zurück zum Zitat Zhang, G., Nie, S., Zhang, Z., & Zhang, Z. (2020). Longitudinal change of SARS-Cov2 antibodies in patients with COVID-19. J Infect Dis Zhang, G., Nie, S., Zhang, Z., & Zhang, Z. (2020). Longitudinal change of SARS-Cov2 antibodies in patients with COVID-19. J Infect Dis
333.
Zurück zum Zitat Payne, D. C., Smith-Jeffcoat, S. E., Nowak, G., Chukwuma, U., Geibe, J. R., Hawkins, R. J., et al. (2020). SARS-CoV-2 infections and serologic responses from a sample of U.S. Navy Service Members - USS Theodore Roosevelt, April 2020. MMWR Morb Mortal Wkly Rep, 69(23), 714–721. Payne, D. C., Smith-Jeffcoat, S. E., Nowak, G., Chukwuma, U., Geibe, J. R., Hawkins, R. J., et al. (2020). SARS-CoV-2 infections and serologic responses from a sample of U.S. Navy Service Members - USS Theodore Roosevelt, April 2020. MMWR Morb Mortal Wkly Rep, 69(23), 714–721.
334.
Zurück zum Zitat Cai, X. F., Chen, J., Hu, J. L., Long, Q. X., Deng, H. J., Fan, K., et al. (2020). A peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of coronavirus disease 2019 (COVID-19). J Infect Dis Cai, X. F., Chen, J., Hu, J. L., Long, Q. X., Deng, H. J., Fan, K., et al. (2020). A peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of coronavirus disease 2019 (COVID-19). J Infect Dis
335.
Zurück zum Zitat Cassaniti, I., Novazzi, F., Giardina, F., Salinaro, F., Sachs, M., Perlini, S., et al. (2020). Performance of VivaDiag COVID-19 IgM/IgG rapid test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J Med Virol Cassaniti, I., Novazzi, F., Giardina, F., Salinaro, F., Sachs, M., Perlini, S., et al. (2020). Performance of VivaDiag COVID-19 IgM/IgG rapid test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J Med Virol
336.
Zurück zum Zitat Castro, R., Luz, P. M., Wakimoto, M. D., Veloso, V. G., Grinsztejn, B., & Perazzo, H. (2020). COVID-19: A meta-analysis of diagnostic test accuracy of commercial assays registered in Brazil. Braz J Infect Dis Castro, R., Luz, P. M., Wakimoto, M. D., Veloso, V. G., Grinsztejn, B., & Perazzo, H. (2020). COVID-19: A meta-analysis of diagnostic test accuracy of commercial assays registered in Brazil. Braz J Infect Dis
337.
Zurück zum Zitat di Mauro, G., Cristina, S., Concetta, R., Francesco, R., & Annalisa, C. (2020). SARS-Cov-2 infection: Response of human immune system and possible implications for the rapid test and treatment. Int Immunopharmacol, 84, 106519. di Mauro, G., Cristina, S., Concetta, R., Francesco, R., & Annalisa, C. (2020). SARS-Cov-2 infection: Response of human immune system and possible implications for the rapid test and treatment. Int Immunopharmacol, 84, 106519.
338.
Zurück zum Zitat Dohla, M., Boesecke, C., Schulte, B., Diegmann, C., Sib, E., Richter, E., et al. (2020). Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity. Public Health, 182, 170–172.PubMedCrossRef Dohla, M., Boesecke, C., Schulte, B., Diegmann, C., Sib, E., Richter, E., et al. (2020). Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity. Public Health, 182, 170–172.PubMedCrossRef
339.
Zurück zum Zitat Hou, H., Wang, T., Zhang, B., Luo, Y., Mao, L., Wang, F., et al. (2020). Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin Transl Immunology, 9(5), e01136. Hou, H., Wang, T., Zhang, B., Luo, Y., Mao, L., Wang, F., et al. (2020). Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin Transl Immunology, 9(5), e01136.
340.
Zurück zum Zitat Infantino, M., Grossi, V., Lari, B., Bambi, R., Perri, A., Manneschi, M., et al. (2020). Diagnostic accuracy of an automated chemiluminescent immunoassay for anti-SARS-CoV-2 IgM and IgG antibodies: an Italian experience. J Med Virol Infantino, M., Grossi, V., Lari, B., Bambi, R., Perri, A., Manneschi, M., et al. (2020). Diagnostic accuracy of an automated chemiluminescent immunoassay for anti-SARS-CoV-2 IgM and IgG antibodies: an Italian experience. J Med Virol
341.
Zurück zum Zitat Jin, Y., Wang, M., Zuo, Z., Fan, C., Ye, F., Cai, Z., et al. (2020). Diagnostic value and dynamic variance of serum antibody in coronavirus disease 2019. International Journal of Infectious Diseases, 94, 49–52.PubMedPubMedCentralCrossRef Jin, Y., Wang, M., Zuo, Z., Fan, C., Ye, F., Cai, Z., et al. (2020). Diagnostic value and dynamic variance of serum antibody in coronavirus disease 2019. International Journal of Infectious Diseases, 94, 49–52.PubMedPubMedCentralCrossRef
342.
Zurück zum Zitat Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y., Li, S., et al. (2020). Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol Li, Z., Yi, Y., Luo, X., Xiong, N., Liu, Y., Li, S., et al. (2020). Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol
343.
Zurück zum Zitat Lippi, G., Salvagno, G. L., Pegoraro, M., Militello, V., Caloi, C., Peretti, A., et al. (2020). Assessment of immune response to SARS-CoV-2 with fully automated MAGLUMI 2019-nCoV IgG and IgM chemiluminescence immunoassays. Clin Chem Lab Med Lippi, G., Salvagno, G. L., Pegoraro, M., Militello, V., Caloi, C., Peretti, A., et al. (2020). Assessment of immune response to SARS-CoV-2 with fully automated MAGLUMI 2019-nCoV IgG and IgM chemiluminescence immunoassays. Clin Chem Lab Med
344.
Zurück zum Zitat Liu, W., Liu, L., Kou, G., Zheng, Y., Ding, Y., Ni, W., et al. (2020). Evaluation of nucleocapsid and spike protein-based ELISAs for detecting antibodies against SARS-CoV-2. J Clin Microbiol Liu, W., Liu, L., Kou, G., Zheng, Y., Ding, Y., Ni, W., et al. (2020). Evaluation of nucleocapsid and spike protein-based ELISAs for detecting antibodies against SARS-CoV-2. J Clin Microbiol
345.
Zurück zum Zitat Padoan, A., Cosma, C., Sciacovelli, L., Faggian, D., & Plebani, M. (2020). Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics. Clin Chem Lab Med Padoan, A., Cosma, C., Sciacovelli, L., Faggian, D., & Plebani, M. (2020). Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics. Clin Chem Lab Med
346.
Zurück zum Zitat Shen, B., Zheng, Y., Zhang, X., Zhang, W., Wang, D., Jin, J., et al. (2020). Clinical evaluation of a rapid colloidal gold immunochromatography assay for SARS-Cov-2 IgM/IgG. Am J Transl Res, 12(4), 1348–1354.PubMedPubMedCentral Shen, B., Zheng, Y., Zhang, X., Zhang, W., Wang, D., Jin, J., et al. (2020). Clinical evaluation of a rapid colloidal gold immunochromatography assay for SARS-Cov-2 IgM/IgG. Am J Transl Res, 12(4), 1348–1354.PubMedPubMedCentral
347.
Zurück zum Zitat Spicuzza, L., Montineri, A., Manuele, R., Crimi, C., Pistorio, M. P., Campisi, R., et al. (2020). Reliability and usefulness of a rapid IgM-IgG antibody test for the diagnosis of SARS-CoV-2 infection: A preliminary report. J Infect Spicuzza, L., Montineri, A., Manuele, R., Crimi, C., Pistorio, M. P., Campisi, R., et al. (2020). Reliability and usefulness of a rapid IgM-IgG antibody test for the diagnosis of SARS-CoV-2 infection: A preliminary report. J Infect
348.
Zurück zum Zitat Vashist, S. K. (2020). In Vitro Diagnostic Assays for COVID-19: Recent Advances and Emerging Trends. Diagnostics (Basel), 10(4) Vashist, S. K. (2020). In Vitro Diagnostic Assays for COVID-19: Recent Advances and Emerging Trends. Diagnostics (Basel), 10(4)
349.
Zurück zum Zitat Wang, Q., Du, Q., Guo, B., Mu, D., Lu, X., Ma, Q., et al. (2020). A method to prevent SARS-CoV-2 IgM false positives in gold immunochromatography and enzyme-linked immunosorbent assays. J Clin Microbiol Wang, Q., Du, Q., Guo, B., Mu, D., Lu, X., Ma, Q., et al. (2020). A method to prevent SARS-CoV-2 IgM false positives in gold immunochromatography and enzyme-linked immunosorbent assays. J Clin Microbiol
350.
Zurück zum Zitat Xie, J., Ding, C., Li, J., Wang, Y., Guo, H., Lu, Z., et al. (2020). Characteristics of patients with coronavirus disease (COVID-19) confirmed using an IgM-IgG antibody test. J Med Virol Xie, J., Ding, C., Li, J., Wang, Y., Guo, H., Lu, Z., et al. (2020). Characteristics of patients with coronavirus disease (COVID-19) confirmed using an IgM-IgG antibody test. J Med Virol
351.
Zurück zum Zitat Yong, G., Yi, Y., Tuantuan, L., Xiaowu, W., Xiuyong, L., Ang, L., et al. (2020). Evaluation of the auxiliary diagnostic value of antibody assays for the detection of novel coronavirus (SARS-CoV-2). J Med Virol Yong, G., Yi, Y., Tuantuan, L., Xiaowu, W., Xiuyong, L., Ang, L., et al. (2020). Evaluation of the auxiliary diagnostic value of antibody assays for the detection of novel coronavirus (SARS-CoV-2). J Med Virol
352.
Zurück zum Zitat Zainol Rashid, Z., Othman, S. N., Abdul Samat, M. N., Ali, U. K., & Wong, K. K. (2020). Diagnostic performance of COVID-19 serology assays. Malaysian Journal of Pathology, 42(1), 13–21. Zainol Rashid, Z., Othman, S. N., Abdul Samat, M. N., Ali, U. K., & Wong, K. K. (2020). Diagnostic performance of COVID-19 serology assays. Malaysian Journal of Pathology, 42(1), 13–21.
353.
Zurück zum Zitat Zhong, L., Chuan, J., Gong, B., Shuai, P., Zhou, Y., Zhang, Y., et al. (2020). Detection of serum IgM and IgG for COVID-19 diagnosis. Sci China Life Sci, 63(5), 777–780.PubMedCrossRef Zhong, L., Chuan, J., Gong, B., Shuai, P., Zhou, Y., Zhang, Y., et al. (2020). Detection of serum IgM and IgG for COVID-19 diagnosis. Sci China Life Sci, 63(5), 777–780.PubMedCrossRef
354.
Zurück zum Zitat Arman, M., & Krauel, K. (2015). Human platelet IgG Fc receptor FcgammaRIIA in immunity and thrombosis. Journal of Thrombosis and Haemostasis, 13(6), 893–908.PubMedCrossRef Arman, M., & Krauel, K. (2015). Human platelet IgG Fc receptor FcgammaRIIA in immunity and thrombosis. Journal of Thrombosis and Haemostasis, 13(6), 893–908.PubMedCrossRef
355.
Zurück zum Zitat Worth, R. G., Chien, C. D., Chien, P., Reilly, M. P., McKenzie, S. E., & Schreiber, A. D. (2006). Platelet FcgammaRIIA binds and internalizes IgG-containing complexes. Experimental Hematology, 34(11), 1490–1495.PubMedCrossRef Worth, R. G., Chien, C. D., Chien, P., Reilly, M. P., McKenzie, S. E., & Schreiber, A. D. (2006). Platelet FcgammaRIIA binds and internalizes IgG-containing complexes. Experimental Hematology, 34(11), 1490–1495.PubMedCrossRef
356.
Zurück zum Zitat Boilard, E., Pare, G., Rousseau, M., Cloutier, N., Dubuc, I., Levesque, T., et al. (2014). Influenza virus H1N1 activates platelets through FcgammaRIIA signaling and thrombin generation. Blood, 123(18), 2854–2863.PubMedCrossRef Boilard, E., Pare, G., Rousseau, M., Cloutier, N., Dubuc, I., Levesque, T., et al. (2014). Influenza virus H1N1 activates platelets through FcgammaRIIA signaling and thrombin generation. Blood, 123(18), 2854–2863.PubMedCrossRef
357.
Zurück zum Zitat Cloutier, N., Tan, S., Boudreau, L. H., Cramb, C., Subbaiah, R., Lahey, L., et al. (2013). The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: The microparticle-associated immune complexes. EMBO Molecular Medicine, 5(2), 235–249.PubMedCrossRef Cloutier, N., Tan, S., Boudreau, L. H., Cramb, C., Subbaiah, R., Lahey, L., et al. (2013). The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: The microparticle-associated immune complexes. EMBO Molecular Medicine, 5(2), 235–249.PubMedCrossRef
358.
Zurück zum Zitat Johnston, I., Sarkar, A., Hayes, V., Koma, G. T., Arepally, G. M., Chen, J., et al. (2020). Recognition of PF4-VWF complexes by heparin-induced thrombocytopenia antibodies contributes to thrombus propagation. Blood, 135(15), 1270–1280.PubMedPubMedCentralCrossRef Johnston, I., Sarkar, A., Hayes, V., Koma, G. T., Arepally, G. M., Chen, J., et al. (2020). Recognition of PF4-VWF complexes by heparin-induced thrombocytopenia antibodies contributes to thrombus propagation. Blood, 135(15), 1270–1280.PubMedPubMedCentralCrossRef
359.
Zurück zum Zitat Bossuyt, X., Moens, L., Van Hoeyveld, E., Jeurissen, A., Bogaert, G., Sauer, K., et al. (2007). Coexistence of (partial) immune defects and risk of recurrent respiratory infections. Clinical Chemistry, 53(1), 124–130.PubMedCrossRef Bossuyt, X., Moens, L., Van Hoeyveld, E., Jeurissen, A., Bogaert, G., Sauer, K., et al. (2007). Coexistence of (partial) immune defects and risk of recurrent respiratory infections. Clinical Chemistry, 53(1), 124–130.PubMedCrossRef
360.
Zurück zum Zitat Kyaw, A. K., Ngwe Tun, M. M., Moi, M. L., Nabeshima, T., Soe, K. T., Thwe, S. M., et al. (2017). Clinical, virological and epidemiological characterization of dengue outbreak in Myanmar, 2015. Epidemiology and Infection, 145(9), 1886–1897.PubMedCrossRef Kyaw, A. K., Ngwe Tun, M. M., Moi, M. L., Nabeshima, T., Soe, K. T., Thwe, S. M., et al. (2017). Clinical, virological and epidemiological characterization of dengue outbreak in Myanmar, 2015. Epidemiology and Infection, 145(9), 1886–1897.PubMedCrossRef
361.
Zurück zum Zitat Payeras, A., Martinez, P., Mila, J., Riera, M., Pareja, A., Casal, J., et al. (2002). Risk factors in HIV-1-infected patients developing repetitive bacterial infections: Toxicological, clinical, specific antibody class responses, opsonophagocytosis and Fc(gamma) RIIa polymorphism characteristics. Clinical and Experimental Immunology, 130(2), 271–278.PubMedPubMedCentralCrossRef Payeras, A., Martinez, P., Mila, J., Riera, M., Pareja, A., Casal, J., et al. (2002). Risk factors in HIV-1-infected patients developing repetitive bacterial infections: Toxicological, clinical, specific antibody class responses, opsonophagocytosis and Fc(gamma) RIIa polymorphism characteristics. Clinical and Experimental Immunology, 130(2), 271–278.PubMedPubMedCentralCrossRef
362.
Zurück zum Zitat Pereira, A., de Siqueira, T. R., de Oliveira Prado, A. A., da Silva, C. A. V., de Fatima Silva Moraes, T., Aleixo, A. A., et al. (2018). High prevalence of dengue antibodies and the arginine variant of the FcgammaRIIa polymorphism in asymptomatic individuals in a population of Minas Gerais State Southeast Brazil. Immunogenetics, 70(6), 355–362.PubMedCrossRef Pereira, A., de Siqueira, T. R., de Oliveira Prado, A. A., da Silva, C. A. V., de Fatima Silva Moraes, T., Aleixo, A. A., et al. (2018). High prevalence of dengue antibodies and the arginine variant of the FcgammaRIIa polymorphism in asymptomatic individuals in a population of Minas Gerais State Southeast Brazil. Immunogenetics, 70(6), 355–362.PubMedCrossRef
363.
Zurück zum Zitat Sanchez Guiu, I. M., Martinez-Martinez, I., Martinez, C., Navarro-Fernandez, J., Garcia-Candel, F., Ferrer-Marin, F., et al. (2015). An atypical IgM class platelet cold agglutinin induces GPVI-dependent aggregation of human platelets. Thrombosis and Haemostasis, 114(2), 313–324.PubMedCrossRef Sanchez Guiu, I. M., Martinez-Martinez, I., Martinez, C., Navarro-Fernandez, J., Garcia-Candel, F., Ferrer-Marin, F., et al. (2015). An atypical IgM class platelet cold agglutinin induces GPVI-dependent aggregation of human platelets. Thrombosis and Haemostasis, 114(2), 313–324.PubMedCrossRef
364.
Zurück zum Zitat Schmitz, H., Gabriel, M., & Emmerich, P. (2011). Specific detection of antibodies to different flaviviruses using a new immune complex ELISA. Medical Microbiology and Immunology, 200(4), 233–239.PubMedCrossRef Schmitz, H., Gabriel, M., & Emmerich, P. (2011). Specific detection of antibodies to different flaviviruses using a new immune complex ELISA. Medical Microbiology and Immunology, 200(4), 233–239.PubMedCrossRef
365.
Zurück zum Zitat Zhao, J., Yuan, Q., Wang, H., Liu, W., Liao, X., Su, Y., et al. (2020). Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis Zhao, J., Yuan, Q., Wang, H., Liu, W., Liao, X., Su, Y., et al. (2020). Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis
366.
Zurück zum Zitat Larsen, J. B., Pasalic, L., & Hvas, A. M. (2020). Platelets in Coronavirus Disease 2019. Semin Thromb Hemost Larsen, J. B., Pasalic, L., & Hvas, A. M. (2020). Platelets in Coronavirus Disease 2019. Semin Thromb Hemost
367.
Zurück zum Zitat Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382(18), 1708–1720.CrossRef Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382(18), 1708–1720.CrossRef
368.
Zurück zum Zitat Zheng, Y., Zhang, Y., Chi, H., Chen, S., Peng, M., Luo, L., et al. (2020). The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: A retrospective study. Clin Chem Lab Med Zheng, Y., Zhang, Y., Chi, H., Chen, S., Peng, M., Luo, L., et al. (2020). The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: A retrospective study. Clin Chem Lab Med
369.
Zurück zum Zitat Chen, R., Sang, L., Jiang, M., Yang, Z., Jia, N., Fu, W., et al. (2020). Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol Chen, R., Sang, L., Jiang, M., Yang, Z., Jia, N., Fu, W., et al. (2020). Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol
370.
Zurück zum Zitat Henry, B. M., de Oliveira, M. H. S., Benoit, S., Plebani, M., & Lippi, G. (2020). Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chem Lab Med Henry, B. M., de Oliveira, M. H. S., Benoit, S., Plebani, M., & Lippi, G. (2020). Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chem Lab Med
371.
Zurück zum Zitat Connors, J. M., & Levy, J. H. (2020). COVID-19 and its implications for thrombosis and anticoagulation. Blood Connors, J. M., & Levy, J. H. (2020). COVID-19 and its implications for thrombosis and anticoagulation. Blood
372.
Zurück zum Zitat Cheng, Z., Lu, Y., Cao, Q., Qin, L., Pan, Z., Yan, F., et al. (2020). Clinical features and chest CT manifestations of coronavirus disease 2019 (COVID-19) in a single-center study in Shanghai, China. AJR Am J Roentgenol, 1–6. Cheng, Z., Lu, Y., Cao, Q., Qin, L., Pan, Z., Yan, F., et al. (2020). Clinical features and chest CT manifestations of coronavirus disease 2019 (COVID-19) in a single-center study in Shanghai, China. AJR Am J Roentgenol, 1–6.
373.
Zurück zum Zitat Hwang, S. M., Na, B. J., Jung, Y., Lim, H. S., Seo, J. E., Park, S. A., et al. (2019). Clinical and laboratory findings of middle east respiratory syndrome coronavirus infection. Japanese Journal of Infectious Diseases, 72(3), 160–167.PubMedCrossRef Hwang, S. M., Na, B. J., Jung, Y., Lim, H. S., Seo, J. E., Park, S. A., et al. (2019). Clinical and laboratory findings of middle east respiratory syndrome coronavirus infection. Japanese Journal of Infectious Diseases, 72(3), 160–167.PubMedCrossRef
374.
Zurück zum Zitat Alfaraj, S. H., Al-Tawfiq, J. A., Altuwaijri, T. A., & Memish, Z. A. (2019). Middle East respiratory syndrome coronavirus in pediatrics: A report of seven cases from Saudi Arabia. Frontiers in Medicine, 13(1), 126–130.CrossRef Alfaraj, S. H., Al-Tawfiq, J. A., Altuwaijri, T. A., & Memish, Z. A. (2019). Middle East respiratory syndrome coronavirus in pediatrics: A report of seven cases from Saudi Arabia. Frontiers in Medicine, 13(1), 126–130.CrossRef
375.
Zurück zum Zitat Zuo, Y., Yalavarthi, S., Shi, H., Gockman, K., Zuo, M., Madison, J. A., et al. (2020). Neutrophil extracellular traps in COVID-19. JCI Insight Zuo, Y., Yalavarthi, S., Shi, H., Gockman, K., Zuo, M., Madison, J. A., et al. (2020). Neutrophil extracellular traps in COVID-19. JCI Insight
376.
Zurück zum Zitat Clark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., Kelly, M. M., et al. (2007). Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine, 13(4), 463–469.PubMedCrossRef Clark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., Kelly, M. M., et al. (2007). Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine, 13(4), 463–469.PubMedCrossRef
377.
Zurück zum Zitat Peters, M. J., Dixon, G., Kotowicz, K. T., Hatch, D. J., Heyderman, R. S., & Klein, N. J. (1999). Circulating platelet-neutrophil complexes represent a subpopulation of activated neutrophils primed for adhesion, phagocytosis and intracellular killing. British Journal of Haematology, 106(2), 391–399.PubMedCrossRef Peters, M. J., Dixon, G., Kotowicz, K. T., Hatch, D. J., Heyderman, R. S., & Klein, N. J. (1999). Circulating platelet-neutrophil complexes represent a subpopulation of activated neutrophils primed for adhesion, phagocytosis and intracellular killing. British Journal of Haematology, 106(2), 391–399.PubMedCrossRef
378.
Zurück zum Zitat de Gaetano, G., Cerletti, C., & Evangelista, V. (1999). Recent advances in platelet-polymorphonuclear leukocyte interaction. Haemostasis, 29(1), 41–49.PubMed de Gaetano, G., Cerletti, C., & Evangelista, V. (1999). Recent advances in platelet-polymorphonuclear leukocyte interaction. Haemostasis, 29(1), 41–49.PubMed
379.
Zurück zum Zitat Koppang, E. O., Fischer, U., Satoh, M., & Jirillo, E. (2007). Inflammation in fish as seen from a morphological point of view with special reference to the vascular compartment. Current Pharmaceutical Design, 13(36), 3649–3655.PubMedCrossRef Koppang, E. O., Fischer, U., Satoh, M., & Jirillo, E. (2007). Inflammation in fish as seen from a morphological point of view with special reference to the vascular compartment. Current Pharmaceutical Design, 13(36), 3649–3655.PubMedCrossRef
380.
Zurück zum Zitat Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., et al. (2020). {Luo, 2020 #20;Morrison, 2020 #11}Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A Xu, X., Han, M., Li, T., Sun, W., Wang, D., Fu, B., et al. (2020). {Luo, 2020 #20;Morrison, 2020 #11}Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A
381.
Zurück zum Zitat Aziz, M., Fatima, R., & Assaly, R. (2020). Elevated Interleukin-6 and Severe COVID-19: A Meta-Analysis. J Med Virol Aziz, M., Fatima, R., & Assaly, R. (2020). Elevated Interleukin-6 and Severe COVID-19: A Meta-Analysis. J Med Virol
382.
Zurück zum Zitat Chen, X., Zhao, B., Qu, Y., Chen, Y., Xiong, J., Feng, Y., et al. (2020). Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin Infect Dis Chen, X., Zhao, B., Qu, Y., Chen, Y., Xiong, J., Feng, Y., et al. (2020). Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clin Infect Dis
383.
Zurück zum Zitat Guzik, T. J., Mohiddin, S. A., Dimarco, A., Patel, V., Savvatis, K., Marelli-Berg, F. M., et al. (2020). COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res Guzik, T. J., Mohiddin, S. A., Dimarco, A., Patel, V., Savvatis, K., Marelli-Berg, F. M., et al. (2020). COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res
384.
Zurück zum Zitat Ke, C., Wang, Y., Zeng, X., Yang, C., & Hu, Z. (2020). 2019 novel coronavirus disease (COVID-19) in hemodialysis patients: A report of two cases. Clin Biochem Ke, C., Wang, Y., Zeng, X., Yang, C., & Hu, Z. (2020). 2019 novel coronavirus disease (COVID-19) in hemodialysis patients: A report of two cases. Clin Biochem
385.
Zurück zum Zitat Liu, B., Li, M., Zhou, Z., Guan, X., & Xiang, Y. (2020). Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun, 102452. Liu, B., Li, M., Zhou, Z., Guan, X., & Xiang, Y. (2020). Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J Autoimmun, 102452.
386.
Zurück zum Zitat Wei, X. S., Wang, X. R., Zhang, J. C., Yang, W. B., Ma, W. L., Yang, B. H., et al. (2020). A cluster of health care workers with COVID-19 pneumonia caused by SARS-CoV-2. J Microbiol Immunol Infect Wei, X. S., Wang, X. R., Zhang, J. C., Yang, W. B., Ma, W. L., Yang, B. H., et al. (2020). A cluster of health care workers with COVID-19 pneumonia caused by SARS-CoV-2. J Microbiol Immunol Infect
387.
Zurück zum Zitat Yao, Z., Zheng, Z., Wu, K., & Junhua, Z. (2020). Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2. Aging (Albany NY), 12 Yao, Z., Zheng, Z., Wu, K., & Junhua, Z. (2020). Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2. Aging (Albany NY), 12
388.
Zurück zum Zitat Zeng, J. H., Liu, Y. X., Yuan, J., Wang, F. X., Wu, W. B., Li, J. X., et al. (2020). First case of COVID-19 complicated with fulminant myocarditis: A case report and insights. Infection Zeng, J. H., Liu, Y. X., Yuan, J., Wang, F. X., Wu, W. B., Li, J. X., et al. (2020). First case of COVID-19 complicated with fulminant myocarditis: A case report and insights. Infection
389.
Zurück zum Zitat Zhang, J., Yu, M., Tong, S., Liu, L. Y., & Tang, L. V. (2020). Predictive factors for disease progression in hospitalized patients with coronavirus disease 2019 in Wuhan, China. J Clin Virol, 127, 104392. Zhang, J., Yu, M., Tong, S., Liu, L. Y., & Tang, L. V. (2020). Predictive factors for disease progression in hospitalized patients with coronavirus disease 2019 in Wuhan, China. J Clin Virol, 127, 104392.
390.
Zurück zum Zitat Zhou, Y., Han, T., Chen, J., Hou, C., Hua, L., He, S., et al. (2020). Clinical and autoimmune characteristics of severe and critical cases with COVID-19. Clin Transl Sci Zhou, Y., Han, T., Chen, J., Hou, C., Hua, L., He, S., et al. (2020). Clinical and autoimmune characteristics of severe and critical cases with COVID-19. Clin Transl Sci
391.
Zurück zum Zitat Conti, P., Gallenga, C. E., Tete, G., Caraffa, A., Ronconi, G., Younes, A., et al. (2020). How to reduce the likelihood of coronavirus-19 (CoV-19 or SARS-CoV-2) infection and lung inflammation mediated by IL-1. J Biol Regul Homeost Agents, 34(2) Conti, P., Gallenga, C. E., Tete, G., Caraffa, A., Ronconi, G., Younes, A., et al. (2020). How to reduce the likelihood of coronavirus-19 (CoV-19 or SARS-CoV-2) infection and lung inflammation mediated by IL-1. J Biol Regul Homeost Agents, 34(2)
392.
Zurück zum Zitat Conti, P., Ronconi, G., Caraffa, A., Gallenga, C. E., Ross, R., Frydas, I., et al. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J Biol Regul Homeost Agents, 34(2) Conti, P., Ronconi, G., Caraffa, A., Gallenga, C. E., Ross, R., Frydas, I., et al. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J Biol Regul Homeost Agents, 34(2)
393.
Zurück zum Zitat Amgalan, A., & Othman, M. (2020). Hemostatic laboratory derangements in COVID-19 with a focus on platelet count. Platelets, 1–6. Amgalan, A., & Othman, M. (2020). Hemostatic laboratory derangements in COVID-19 with a focus on platelet count. Platelets, 1–6.
394.
Zurück zum Zitat Salah, H. M., & Mehta, J. L. (2021). Meta-analysis of the effect of aspirin on mortality in COVID-19. American Journal of Cardiology, 142, 158–159.CrossRef Salah, H. M., & Mehta, J. L. (2021). Meta-analysis of the effect of aspirin on mortality in COVID-19. American Journal of Cardiology, 142, 158–159.CrossRef
395.
Zurück zum Zitat Meizlish, M. L., Goshua, G., Liu, Y., Fine, R., Amin, K., Chang, E., et al. (2021). Intermediate-dose anticoagulation, aspirin, and in-hospital mortality in COVID-19: A propensity score-matched analysis. Am J Hematol Meizlish, M. L., Goshua, G., Liu, Y., Fine, R., Amin, K., Chang, E., et al. (2021). Intermediate-dose anticoagulation, aspirin, and in-hospital mortality in COVID-19: A propensity score-matched analysis. Am J Hematol
396.
Zurück zum Zitat Kwiatkowski, S., Borowski, D., Kajdy, A., Poon, L. C., Rokita, W., & Wielgos, M. (2020). Why we should not stop giving aspirin to pregnant women during the COVID-19 pandemic. Ultrasound in Obstetrics and Gynecology, 55(6), 841–843.PubMedCrossRef Kwiatkowski, S., Borowski, D., Kajdy, A., Poon, L. C., Rokita, W., & Wielgos, M. (2020). Why we should not stop giving aspirin to pregnant women during the COVID-19 pandemic. Ultrasound in Obstetrics and Gynecology, 55(6), 841–843.PubMedCrossRef
397.
Zurück zum Zitat Rauch, B. (2020). Cost-effectiveness of rivaroxaban plus aspirin (dual pathway inhibition) for prevention of ischaemic events in patients with cardiovascular disease: on top optimisation of secondary prevention medication in the context of COVID-19 pandemia. Eur J Prev Cardiol, 2047487320920754. Rauch, B. (2020). Cost-effectiveness of rivaroxaban plus aspirin (dual pathway inhibition) for prevention of ischaemic events in patients with cardiovascular disease: on top optimisation of secondary prevention medication in the context of COVID-19 pandemia. Eur J Prev Cardiol, 2047487320920754.
398.
Zurück zum Zitat McClure, G. R., Kaplovitch, E., Narula, S., Bhagirath, V. C., & Anand, S. S. (2019). Rivaroxaban and aspirin in peripheral vascular disease: A review of implementation strategies and management of common clinical scenarios. Current Cardiology Reports, 21(10), 115.PubMedPubMedCentralCrossRef McClure, G. R., Kaplovitch, E., Narula, S., Bhagirath, V. C., & Anand, S. S. (2019). Rivaroxaban and aspirin in peripheral vascular disease: A review of implementation strategies and management of common clinical scenarios. Current Cardiology Reports, 21(10), 115.PubMedPubMedCentralCrossRef
399.
Zurück zum Zitat Casey, K., Iteen, A., Nicolini, R., & Auten, J. (2020). COVID-19 pneumonia with hemoptysis: Acute segmental pulmonary emboli associated with novel coronavirus infection. Am J Emerg Med Casey, K., Iteen, A., Nicolini, R., & Auten, J. (2020). COVID-19 pneumonia with hemoptysis: Acute segmental pulmonary emboli associated with novel coronavirus infection. Am J Emerg Med
400.
Zurück zum Zitat Yin, S., Huang, M., Li, D., & Tang, N. (2020). Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. J Thromb Thrombolysis Yin, S., Huang, M., Li, D., & Tang, N. (2020). Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. J Thromb Thrombolysis
401.
402.
Zurück zum Zitat Li, H., Liu, L., Zhang, D., Xu, J., Dai, H., Tang, N., et al. (2020). SARS-CoV-2 and viral sepsis: Observations and hypotheses. Lancet, 395(10235), 1517–1520.PubMedPubMedCentralCrossRef Li, H., Liu, L., Zhang, D., Xu, J., Dai, H., Tang, N., et al. (2020). SARS-CoV-2 and viral sepsis: Observations and hypotheses. Lancet, 395(10235), 1517–1520.PubMedPubMedCentralCrossRef
403.
Zurück zum Zitat Canzano, P., Brambilla, M., Porro, B., Cosentino, N., Tortorici, E., Vicini, S., et al. (2021). Platelet and endothelial activation as potential mechanisms behind the thrombotic complications of COVID-19 patients. JACC Basic Transl Sci Canzano, P., Brambilla, M., Porro, B., Cosentino, N., Tortorici, E., Vicini, S., et al. (2021). Platelet and endothelial activation as potential mechanisms behind the thrombotic complications of COVID-19 patients. JACC Basic Transl Sci
404.
Zurück zum Zitat Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., & Melguizo-Rodriguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev Costela-Ruiz, V. J., Illescas-Montes, R., Puerta-Puerta, J. M., Ruiz, C., & Melguizo-Rodriguez, L. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev
405.
Zurück zum Zitat Debnath, M., Banerjee, M., & Berk, M. (2020). Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB J Debnath, M., Banerjee, M., & Berk, M. (2020). Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB J
406.
Zurück zum Zitat Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., et al. (2020). COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 395(10229), 1033–1034.PubMedPubMedCentralCrossRef Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., et al. (2020). COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 395(10229), 1033–1034.PubMedPubMedCentralCrossRef
407.
Zurück zum Zitat Pain, C. E., Felsenstein, S., Cleary, G., Mayell, S., Conrad, K., Harave, S., et al. (2020). Novel paediatric presentation of COVID-19 with ARDS and cytokine storm syndrome without respiratory symptoms. Lancet Rheumatol Pain, C. E., Felsenstein, S., Cleary, G., Mayell, S., Conrad, K., Harave, S., et al. (2020). Novel paediatric presentation of COVID-19 with ARDS and cytokine storm syndrome without respiratory symptoms. Lancet Rheumatol
409.
Zurück zum Zitat Song, P., Li, W., Xie, J., Hou, Y., & You, C. (2020). Cytokine storm induced by SARS-CoV-2. Clin Chim Acta Song, P., Li, W., Xie, J., Hou, Y., & You, C. (2020). Cytokine storm induced by SARS-CoV-2. Clin Chim Acta
410.
Zurück zum Zitat Tomar, B., Anders, H. J., Desai, J., & Mulay, S. R. (2020). Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells, 9(6) Tomar, B., Anders, H. J., Desai, J., & Mulay, S. R. (2020). Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells, 9(6)
411.
Zurück zum Zitat Vaninov, N. (2020). In the eye of the COVID-19 cytokine storm. Nature Reviews Immunology, 20(5), 277.PubMedCrossRef Vaninov, N. (2020). In the eye of the COVID-19 cytokine storm. Nature Reviews Immunology, 20(5), 277.PubMedCrossRef
412.
Zurück zum Zitat Wright, D. J. M. (2020). Prevention of the cytokine storm in COVID-19. Lancet Infect Dis Wright, D. J. M. (2020). Prevention of the cytokine storm in COVID-19. Lancet Infect Dis
413.
Zurück zum Zitat Barnes, B. J., Adrover, J. M., Baxter-Stoltzfus, A., Borczuk, A., Cools-Lartigue, J., Crawford, J. M., et al. (2020). Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med, 217(6) Barnes, B. J., Adrover, J. M., Baxter-Stoltzfus, A., Borczuk, A., Cools-Lartigue, J., Crawford, J. M., et al. (2020). Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med, 217(6)
414.
Zurück zum Zitat Konopka, K. E., Wilson, A., & Myers, J. L. (2020). Postmortem lung findings in an asthmatic patient with coronavirus disease 2019. Chest Konopka, K. E., Wilson, A., & Myers, J. L. (2020). Postmortem lung findings in an asthmatic patient with coronavirus disease 2019. Chest
415.
Zurück zum Zitat Suess, C., & Hausmann, R. (2020). Gross and histopathological pulmonary findings in a COVID-19 associated death during self-isolation. International Journal of Legal Medicine, 134(4), 1285–1290.PubMedPubMedCentralCrossRef Suess, C., & Hausmann, R. (2020). Gross and histopathological pulmonary findings in a COVID-19 associated death during self-isolation. International Journal of Legal Medicine, 134(4), 1285–1290.PubMedPubMedCentralCrossRef
416.
Zurück zum Zitat Wang, J., Hajizadeh, N., Moore, E. E., McIntyre, R. C., Moore, P. K., Veress, L. A., et al. (2020). Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J Thromb Haemost Wang, J., Hajizadeh, N., Moore, E. E., McIntyre, R. C., Moore, P. K., Veress, L. A., et al. (2020). Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series. J Thromb Haemost
417.
Zurück zum Zitat Yan, L., Mir, M., Sanchez, P., Beg, M., Peters, J., Enriquez, O., et al. (2020). Autopsy report with clinical pathological correlation. Arch Pathol Lab Med Yan, L., Mir, M., Sanchez, P., Beg, M., Peters, J., Enriquez, O., et al. (2020). Autopsy report with clinical pathological correlation. Arch Pathol Lab Med
418.
Zurück zum Zitat Youd, E., & Moore, L. (2020). COVID-19 autopsy in people who died in community settings: The first series. Journal of Clinical Pathology, 206710, 1–5. Youd, E., & Moore, L. (2020). COVID-19 autopsy in people who died in community settings: The first series. Journal of Clinical Pathology, 206710, 1–5.
419.
Zurück zum Zitat Dwiputra Hernugrahanto, K., Novembri Utomo, D., Hariman, H., Budhiparama, N. C., Medika Hertanto, D., Santoso, D., et al. (2021). Thromboembolic involvement and its possible pathogenesis in COVID-19 mortality: Lesson from post-mortem reports. European Review for Medical and Pharmacological Sciences, 25(3), 1670–1679.PubMed Dwiputra Hernugrahanto, K., Novembri Utomo, D., Hariman, H., Budhiparama, N. C., Medika Hertanto, D., Santoso, D., et al. (2021). Thromboembolic involvement and its possible pathogenesis in COVID-19 mortality: Lesson from post-mortem reports. European Review for Medical and Pharmacological Sciences, 25(3), 1670–1679.PubMed
420.
Zurück zum Zitat Combes, A. J., Courau, T., Kuhn, N. F., Hu, K. H., Ray, A., Chen, W. S., et al. (2021). Global absence and targeting of protective immune states in severe COVID-19. Nature Combes, A. J., Courau, T., Kuhn, N. F., Hu, K. H., Ray, A., Chen, W. S., et al. (2021). Global absence and targeting of protective immune states in severe COVID-19. Nature
421.
Zurück zum Zitat Zaid, Y., Puhm, F., Allaeys, I., Naya, A., Oudghiri, M., Khalki, L., et al. (2020). Platelets Can Associate With SARS-CoV-2 RNA and Are Hyperactivated in COVID-19. Circulation Research, 127, 1404–1418.PubMedCentralCrossRef Zaid, Y., Puhm, F., Allaeys, I., Naya, A., Oudghiri, M., Khalki, L., et al. (2020). Platelets Can Associate With SARS-CoV-2 RNA and Are Hyperactivated in COVID-19. Circulation Research, 127, 1404–1418.PubMedCentralCrossRef
422.
Zurück zum Zitat Panigrahy, D., Gilligan, M. M., Huang, S., Gartung, A., Cortes-Puch, I., Sime, P. J., et al. (2020). Inflammation resolution: A dual-pronged approach to averting cytokine storms in COVID-19? Cancer Metastasis Rev Panigrahy, D., Gilligan, M. M., Huang, S., Gartung, A., Cortes-Puch, I., Sime, P. J., et al. (2020). Inflammation resolution: A dual-pronged approach to averting cytokine storms in COVID-19? Cancer Metastasis Rev
423.
424.
Zurück zum Zitat Chang, Y. S., Ko, B. H., Ju, J. C., Chang, H. H., Huang, S. H., & Lin, C. W. (2020). SARS unique domain (SUD) of severe acute respiratory syndrome coronavirus induces NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation. Int J Mol Sci, 21(9) Chang, Y. S., Ko, B. H., Ju, J. C., Chang, H. H., Huang, S. H., & Lin, C. W. (2020). SARS unique domain (SUD) of severe acute respiratory syndrome coronavirus induces NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation. Int J Mol Sci, 21(9)
425.
Zurück zum Zitat Hui, K. P. Y., Cheung, M. C., Perera, R., Ng, K. C., Bui, C. H. T., Ho, J. C. W., et al. (2020). Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Respir Med Hui, K. P. Y., Cheung, M. C., Perera, R., Ng, K. C., Bui, C. H. T., Ho, J. C. W., et al. (2020). Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures. Lancet Respir Med
426.
Zurück zum Zitat Magrone, T., Magrone, M., & Jirillo, E. (2020). Focus on receptors for coronaviruses with special reference to angiotensin-converting enzyme 2 as a potential drug target - A perspective. Endocr Metab Immune Disord Drug Targets Magrone, T., Magrone, M., & Jirillo, E. (2020). Focus on receptors for coronaviruses with special reference to angiotensin-converting enzyme 2 as a potential drug target - A perspective. Endocr Metab Immune Disord Drug Targets
427.
Zurück zum Zitat Chu, H., Chan, J. F., Wang, Y., Yuen, T. T., Chai, Y., Hou, Y., et al. (2020). Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis Chu, H., Chan, J. F., Wang, Y., Yuen, T. T., Chai, Y., Hou, Y., et al. (2020). Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis
428.
Zurück zum Zitat DiNicolantonio, J. J., & Barroso-Aranda, J. (2020). Harnessing adenosine A2A receptors as a strategy for suppressing the lung inflammation and thrombotic complications of COVID-19: Potential of pentoxifylline and dipyridamole. Med Hypotheses, 143, 110051. DiNicolantonio, J. J., & Barroso-Aranda, J. (2020). Harnessing adenosine A2A receptors as a strategy for suppressing the lung inflammation and thrombotic complications of COVID-19: Potential of pentoxifylline and dipyridamole. Med Hypotheses, 143, 110051.
429.
Zurück zum Zitat Meikle, C. K. S., Creeden, J. F., McCullumsmith, C., & Worth, R. G. (2021). SSRIs: Applications in inflammatory lung disease and implications for COVID-19. Neuropsychopharmacol Rep, 41(3), 325–335.PubMedPubMedCentralCrossRef Meikle, C. K. S., Creeden, J. F., McCullumsmith, C., & Worth, R. G. (2021). SSRIs: Applications in inflammatory lung disease and implications for COVID-19. Neuropsychopharmacol Rep, 41(3), 325–335.PubMedPubMedCentralCrossRef
430.
Zurück zum Zitat Morris, G., Bortolasci, C. C., Puri, B. K., Olive, L., Marx, W., O'Neil, A., et al. (2021). Preventing the development of severe COVID-19 by modifying immunothrombosis. Life Sci, 264, 118617. Morris, G., Bortolasci, C. C., Puri, B. K., Olive, L., Marx, W., O'Neil, A., et al. (2021). Preventing the development of severe COVID-19 by modifying immunothrombosis. Life Sci, 264, 118617.
431.
Zurück zum Zitat Mir, N., D'Amico, A., Dasher, J., Tolwani, A., & Valentine, V. (2021). Understanding the andromeda strain - The role of cytokine release, coagulopathy and antithrombin III in SARS-CoV2 critical illness. Blood Rev, 45, 100731. Mir, N., D'Amico, A., Dasher, J., Tolwani, A., & Valentine, V. (2021). Understanding the andromeda strain - The role of cytokine release, coagulopathy and antithrombin III in SARS-CoV2 critical illness. Blood Rev, 45, 100731.
432.
Zurück zum Zitat Theoharides, T. C., Antonopoulou, S., & Demopoulos, C. A. (2020). Coronavirus 2019, Microthromboses, and Platelet Activating Factor. Clinical Therapeutics, 42(10), 1850–1852.PubMedPubMedCentralCrossRef Theoharides, T. C., Antonopoulou, S., & Demopoulos, C. A. (2020). Coronavirus 2019, Microthromboses, and Platelet Activating Factor. Clinical Therapeutics, 42(10), 1850–1852.PubMedPubMedCentralCrossRef
433.
Zurück zum Zitat Salamanna, F., Maglio, M., Landini, M. P., & Fini, M. (2020). Platelet functions and activities as potential hematologic parameters related to Coronavirus Disease 2019 (Covid-19). Platelets, 1–6. Salamanna, F., Maglio, M., Landini, M. P., & Fini, M. (2020). Platelet functions and activities as potential hematologic parameters related to Coronavirus Disease 2019 (Covid-19). Platelets, 1–6.
434.
Zurück zum Zitat Pavord, S., Thachil, J., Hunt, B. J., Murphy, M., Lowe, G., Laffan, M., et al. (2020). Practical guidance for the management of adults with immune thrombocytopenia during the COVID-19 pandemic. British Journal of Haematology, 189(6), 1038–1043.PubMedCrossRef Pavord, S., Thachil, J., Hunt, B. J., Murphy, M., Lowe, G., Laffan, M., et al. (2020). Practical guidance for the management of adults with immune thrombocytopenia during the COVID-19 pandemic. British Journal of Haematology, 189(6), 1038–1043.PubMedCrossRef
435.
Zurück zum Zitat Crispin, P. J., & Montague, S. J. (2020). Megakaryocytes: Masters of innate immunity? Arteriosclerosis, Thrombosis, and Vascular Biology, 40(12), 2812–2814.PubMedCrossRef Crispin, P. J., & Montague, S. J. (2020). Megakaryocytes: Masters of innate immunity? Arteriosclerosis, Thrombosis, and Vascular Biology, 40(12), 2812–2814.PubMedCrossRef
436.
Zurück zum Zitat Colling, M. E., & Kanthi, Y. (2020). COVID-19-associated coagulopathy: An exploration of mechanisms. Vascular Medicine, 25(5), 471–478.PubMedCrossRef Colling, M. E., & Kanthi, Y. (2020). COVID-19-associated coagulopathy: An exploration of mechanisms. Vascular Medicine, 25(5), 471–478.PubMedCrossRef
437.
Zurück zum Zitat Bautista-Vargas, M., Bonilla-Abadia, F., & Canas, C. A. (2020). Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. Journal of Thrombosis and Thrombolysis, 50(3), 479–483.PubMedCrossRef Bautista-Vargas, M., Bonilla-Abadia, F., & Canas, C. A. (2020). Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. Journal of Thrombosis and Thrombolysis, 50(3), 479–483.PubMedCrossRef
438.
Zurück zum Zitat Bao, C., Tao, X., Cui, W., Hao, Y., Zheng, S., Yi, B., et al. (2021). Natural killer cells associated with SARS-CoV-2 viral RNA shedding, antibody response and mortality in COVID-19 patients. Experimental Hematology & Oncology, 10(1), 5.CrossRef Bao, C., Tao, X., Cui, W., Hao, Y., Zheng, S., Yi, B., et al. (2021). Natural killer cells associated with SARS-CoV-2 viral RNA shedding, antibody response and mortality in COVID-19 patients. Experimental Hematology & Oncology, 10(1), 5.CrossRef
439.
Zurück zum Zitat Althaus, K., Marini, I., Zlamal, J., Pelzl, L., Singh, A., Haberle, H., et al. (2021). Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood, 137(8), 1061–1071.PubMedPubMedCentralCrossRef Althaus, K., Marini, I., Zlamal, J., Pelzl, L., Singh, A., Haberle, H., et al. (2021). Antibody-induced procoagulant platelets in severe COVID-19 infection. Blood, 137(8), 1061–1071.PubMedPubMedCentralCrossRef
440.
Zurück zum Zitat McMullen, P. D., Cho, J. H., Miller, J. L., Husain, A. N., Pytel, P., & Krausz, T. (2021). A descriptive and quantitative immunohistochemical study demonstrating a spectrum of platelet recruitment patterns across pulmonary infections including COVID-19. American Journal of Clinical Pathology, 155(3), 354–363.PubMedCrossRef McMullen, P. D., Cho, J. H., Miller, J. L., Husain, A. N., Pytel, P., & Krausz, T. (2021). A descriptive and quantitative immunohistochemical study demonstrating a spectrum of platelet recruitment patterns across pulmonary infections including COVID-19. American Journal of Clinical Pathology, 155(3), 354–363.PubMedCrossRef
441.
Zurück zum Zitat Middleton, E. A., He, X. Y., Denorme, F., Campbell, R. A., Ng, D., Salvatore, S. P., et al. (2020). Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 136(10), 1169–1179.PubMedCrossRef Middleton, E. A., He, X. Y., Denorme, F., Campbell, R. A., Ng, D., Salvatore, S. P., et al. (2020). Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 136(10), 1169–1179.PubMedCrossRef
Metadaten
Titel
Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective
verfasst von
David G. Menter
Vahid Afshar-Kharghan
John Paul Shen
Stephanie L. Martch
Anirban Maitra
Scott Kopetz
Kenneth V. Honn
Anil K. Sood
Publikationsdatum
12.01.2022
Verlag
Springer US
Schlagwort
COVID-19
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2022
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-022-10019-5

Weitere Artikel der Ausgabe 1/2022

Cancer and Metastasis Reviews 1/2022 Zur Ausgabe

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.