Skip to main content
Erschienen in: Advances in Gerontology 4/2021

01.10.2021 | COVID-19

Relationship of Peptides and Long Non-Coding RNAs with Aging

verfasst von: R. N. Mustafin

Erschienen in: Advances in Gerontology | Ausgabe 4/2021

Einloggen, um Zugang zu erhalten

Abstract

The paper summarizes data on the existence of evolutionarily fixed species balance of interactions between peptides, RNA, and DNA that provide the stability of the development and functioning of tissues and organs in ontogenesis. Identification of key structures that disturb this balance with aging can become a basis for a specific targeted effect on reversible epigenetic mechanisms of their origin. Non-coding RNAs that, in addition to the function of ribozymes and effectors of RNA interference, are capable of being translated into peptides, which can be the most convenient targets. The effect of the latter on non-coding RNAs and involvement in the same biological processes can become a basis for a complex approach in the development of new geroprotective drugs. It was suggested that peculiarities of the expression of non-coding RNAs typical for a cell type and stage of development reflect transposon activation patterns (programmed at the species level) required for setting of tissue-specific gene networks. This is caused by the formation of non-coding RNAs from transposon transcripts that are regulators of the expression of protein-coding genes in successive cell divisions.
Literatur
1.
Zurück zum Zitat Mustafin, R.N. and Khusnutdinova, E.K., The interaction of transposons with epigenetic factors in aging, Usp. Gerontol., 2017, vol. 30, no. 4, pp. 516–528. Mustafin, R.N. and Khusnutdinova, E.K., The interaction of transposons with epigenetic factors in aging, Usp. Gerontol., 2017, vol. 30, no. 4, pp. 516–528.
2.
Zurück zum Zitat Khavinson, V.Kh., Solovyov, A.Yu., and Shataeva, L.K., Molecular mechanism of interaction between oligopeptides and double-stranded DNA, Bull. Exp. Biol. Med., 2006, vol. 141, no. 4, pp. 457–461.PubMed Khavinson, V.Kh., Solovyov, A.Yu., and Shataeva, L.K., Molecular mechanism of interaction between oligopeptides and double-stranded DNA, Bull. Exp. Biol. Med., 2006, vol. 141, no. 4, pp. 457–461.PubMed
3.
Zurück zum Zitat Khavinson, V.Kh., Peptidnaya regulyatsiya stareniya (Peptide Regulation of Aging), St. Petersburg: Nauka, 2009. Khavinson, V.Kh., Peptidnaya regulyatsiya stareniya (Peptide Regulation of Aging), St. Petersburg: Nauka, 2009.
4.
Zurück zum Zitat Abdolmohsen, K., Panda, A., Kang, M.J., et al., Senescence-associated lncRNAs: senescence-associated long noncoding RNAs, Aging Cell, 2013, vol. 12, pp. 890–900. Abdolmohsen, K., Panda, A., Kang, M.J., et al., Senescence-associated lncRNAs: senescence-associated long noncoding RNAs, Aging Cell, 2013, vol. 12, pp. 890–900.
5.
Zurück zum Zitat Abdelmohsen, K. and Gorospe, M., Noncoding RNA control of cellular senescence, Wiley Interdiscip. Rev.: RNA, 2015, vol. 6, no. 6, pp. 615–629.PubMed Abdelmohsen, K. and Gorospe, M., Noncoding RNA control of cellular senescence, Wiley Interdiscip. Rev.: RNA, 2015, vol. 6, no. 6, pp. 615–629.PubMed
6.
Zurück zum Zitat Anderson, D.M., Anderson, K.M., Chang, C.L., et al., A micropeptide encoded by a putative long noncoding RNA regulates muscle performance, Cell, 2015, vol. 160, pp. 595–606.PubMedPubMedCentral Anderson, D.M., Anderson, K.M., Chang, C.L., et al., A micropeptide encoded by a putative long noncoding RNA regulates muscle performance, Cell, 2015, vol. 160, pp. 595–606.PubMedPubMedCentral
7.
Zurück zum Zitat Aschacher T., Wolf B., Enzmann F., et al., LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines, Oncogene, 2016, vol. 35, pp. 94–104.PubMed Aschacher T., Wolf B., Enzmann F., et al., LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines, Oncogene, 2016, vol. 35, pp. 94–104.PubMed
8.
Zurück zum Zitat Aschacher, T., Wolf, B., Aschacher, O., et al., Long interspersed element-1 ribonucleoprotein particles protect telomeric ends in alternative lengthening of telomeres dependent cells, Neoplasia, 2020, vol. 22, pp. 61–75.PubMed Aschacher, T., Wolf, B., Aschacher, O., et al., Long interspersed element-1 ribonucleoprotein particles protect telomeric ends in alternative lengthening of telomeres dependent cells, Neoplasia, 2020, vol. 22, pp. 61–75.PubMed
9.
Zurück zum Zitat Barry, G., Guennewig, B., Fung, S., et al., Long non-coding RNA expression during aging in the human subependymal zone, Front. Neurol., 2015, vol. 6, p. 45.PubMedPubMedCentral Barry, G., Guennewig, B., Fung, S., et al., Long non-coding RNA expression during aging in the human subependymal zone, Front. Neurol., 2015, vol. 6, p. 45.PubMedPubMedCentral
10.
Zurück zum Zitat Bravo, J.I., Nozownik, S., Danthi, P.S., and Benayoun, B.A., Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation, Development, 2020, vol. 147, pp. 175786. Bravo, J.I., Nozownik, S., Danthi, P.S., and Benayoun, B.A., Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation, Development, 2020, vol. 147, pp. 175786.
11.
Zurück zum Zitat Briggs, J.A., Wolvetang, E.J., Mattick, J.S., et al., Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution, Neuron, 2015, vol. 88, pp. 861–877.PubMed Briggs, J.A., Wolvetang, E.J., Mattick, J.S., et al., Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution, Neuron, 2015, vol. 88, pp. 861–877.PubMed
12.
Zurück zum Zitat Cabili, M.N., Trapnell, C., Goff, L., et al., Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses, Genes Dev., 2011, vol. 25, no. 18, pp. 1915–1927.PubMedPubMedCentral Cabili, M.N., Trapnell, C., Goff, L., et al., Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses, Genes Dev., 2011, vol. 25, no. 18, pp. 1915–1927.PubMedPubMedCentral
13.
Zurück zum Zitat Cao, Q., Wu, J., Wang, X., and Song, C., Noncoding RNAs in vascular aging, Oxid. Med. Cell. Longevity, 2020, vol. 2020, art. ID 7914957. Cao, Q., Wu, J., Wang, X., and Song, C., Noncoding RNAs in vascular aging, Oxid. Med. Cell. Longevity, 2020, vol. 2020, art. ID 7914957.
14.
Zurück zum Zitat Cardelli, M., The epigenetic alteration of endogenous retroelements in aging, Mech. Ageing Dev., 2018, vol. 174, pp. 30–46.PubMed Cardelli, M., The epigenetic alteration of endogenous retroelements in aging, Mech. Ageing Dev., 2018, vol. 174, pp. 30–46.PubMed
15.
Zurück zum Zitat Casacuberta, E., Drosophila: retrotransposons making up telomeres, Viruses, 2017, vol. 9, p. 192.PubMedCentral Casacuberta, E., Drosophila: retrotransposons making up telomeres, Viruses, 2017, vol. 9, p. 192.PubMedCentral
16.
Zurück zum Zitat Cooper, C., Vincett, D., Yan, Y., et al., Steroid receptor RNA activator bi-faceted genetic system: heads or tails, Biochimie, 2011, vol. 93, pp. 1973–1980.PubMed Cooper, C., Vincett, D., Yan, Y., et al., Steroid receptor RNA activator bi-faceted genetic system: heads or tails, Biochimie, 2011, vol. 93, pp. 1973–1980.PubMed
17.
Zurück zum Zitat Dong, X., Chen, K., Cuevas-Diaz Duran, R., et al., Comprehensive identification of long non-coding RNAs in purified cell types from the brain reveals functional lncRNA in OPC fate determination, PLoS Genet., 2015, vol. 11, pp. 1–26. Dong, X., Chen, K., Cuevas-Diaz Duran, R., et al., Comprehensive identification of long non-coding RNAs in purified cell types from the brain reveals functional lncRNA in OPC fate determination, PLoS Genet., 2015, vol. 11, pp. 1–26.
18.
Zurück zum Zitat Ferron, S.R., Mira, H., Franco, S., et al., Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells, Development, 2004, vol. 131, pp. 4059–4070.PubMed Ferron, S.R., Mira, H., Franco, S., et al., Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells, Development, 2004, vol. 131, pp. 4059–4070.PubMed
19.
Zurück zum Zitat Ferron, S.R., Marques-Torrejon, M.A., Mira, H., et al., Telomere shortening in neural stem cells disrupts neuronal differentiation and neurogenesis, J. Neurosci., 2009, vol. 29, pp. 14394–14407.PubMedPubMedCentral Ferron, S.R., Marques-Torrejon, M.A., Mira, H., et al., Telomere shortening in neural stem cells disrupts neuronal differentiation and neurogenesis, J. Neurosci., 2009, vol. 29, pp. 14394–14407.PubMedPubMedCentral
20.
Zurück zum Zitat Fico, A., Fiorenzano, A., Pascale, E., et al., Long non-coding RNA in stem cell pluripotency and lineage commitement: functions and evolutionary conservation, Cell. Mol. Life Sci., 2019, vol. 76, pp. 1459–1471.PubMedPubMedCentral Fico, A., Fiorenzano, A., Pascale, E., et al., Long non-coding RNA in stem cell pluripotency and lineage commitement: functions and evolutionary conservation, Cell. Mol. Life Sci., 2019, vol. 76, pp. 1459–1471.PubMedPubMedCentral
21.
Zurück zum Zitat Gerdes, P., Richardson, S.R., Mager, D.L., and Faulkner, G.J., Transposable elements in the mammalian embryo: pioneers surviving through stealth and service, Genome Biol., 2016, vol. 17, pp. 100–116.PubMedPubMedCentral Gerdes, P., Richardson, S.R., Mager, D.L., and Faulkner, G.J., Transposable elements in the mammalian embryo: pioneers surviving through stealth and service, Genome Biol., 2016, vol. 17, pp. 100–116.PubMedPubMedCentral
22.
Zurück zum Zitat Grammatikakis, I., Panda, A.C., Abdelmohsen, K., and Gorospe, M., Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging, Aging (Albany, NY), 2014, vol. 6, pp. 992–1009. Grammatikakis, I., Panda, A.C., Abdelmohsen, K., and Gorospe, M., Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging, Aging (Albany, NY), 2014, vol. 6, pp. 992–1009.
23.
Zurück zum Zitat Guzman, H., Sanders, K., Idica, A., et al., miR-128 inhibits telomerase activity by targeting TERT mRNA, Oncotarget, 2018, vol. 9, pp. 13244–13253.PubMedPubMedCentral Guzman, H., Sanders, K., Idica, A., et al., miR-128 inhibits telomerase activity by targeting TERT mRNA, Oncotarget, 2018, vol. 9, pp. 13244–13253.PubMedPubMedCentral
24.
Zurück zum Zitat Hadjiargyrou, M. and Delihas, N., The intertwining of transposable elements and non-coding RNAs, Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 13307–13328.PubMedPubMedCentral Hadjiargyrou, M. and Delihas, N., The intertwining of transposable elements and non-coding RNAs, Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 13307–13328.PubMedPubMedCentral
25.
Zurück zum Zitat Honson, D.D. and Macfarlan, T.S., A lncRNA-like role for LINE1s in development, Dev. Cell, 2018, vol. 46, pp. 132–134.PubMedPubMedCentral Honson, D.D. and Macfarlan, T.S., A lncRNA-like role for LINE1s in development, Dev. Cell, 2018, vol. 46, pp. 132–134.PubMedPubMedCentral
26.
Zurück zum Zitat Ingolia, N.T., Lareau, L.F., and Weissman, J.S., Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes, Cell, 2011, vol. 147, pp. 789–802.PubMedPubMedCentral Ingolia, N.T., Lareau, L.F., and Weissman, J.S., Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes, Cell, 2011, vol. 147, pp. 789–802.PubMedPubMedCentral
27.
Zurück zum Zitat Johnson, R. and Guigo, R., The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 2014, vol. 20, pp. 959–976.PubMedPubMedCentral Johnson, R. and Guigo, R., The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 2014, vol. 20, pp. 959–976.PubMedPubMedCentral
28.
Zurück zum Zitat Kapusta, A., Kronenberg, Z., Lynch, V.J., et al., Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs, PLoS Genet., 2013, vol. 9, p. e1003470.PubMedPubMedCentral Kapusta, A., Kronenberg, Z., Lynch, V.J., et al., Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs, PLoS Genet., 2013, vol. 9, p. e1003470.PubMedPubMedCentral
29.
Zurück zum Zitat Kelley, D. and Rinn, J., Transposable elements reveal a stem cell-specific class of long noncoding RNAs, Genome Biol., 2012, vol. 13, no. 11, p. R107.PubMedPubMedCentral Kelley, D. and Rinn, J., Transposable elements reveal a stem cell-specific class of long noncoding RNAs, Genome Biol., 2012, vol. 13, no. 11, p. R107.PubMedPubMedCentral
30.
Zurück zum Zitat Kondo, T., Plaza, S., Zanet, J., et al., Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis, Science, 2010, vol. 329, pp. 336–339.PubMed Kondo, T., Plaza, S., Zanet, J., et al., Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis, Science, 2010, vol. 329, pp. 336–339.PubMed
31.
Zurück zum Zitat Kordyukova, M., Olovnikov, I., and Kalmykova, A., Transposon control mechanisms in telomere biology, Curr. Opin. Genet. Dev., 2018, vol. 49, pp. 56–62.PubMed Kordyukova, M., Olovnikov, I., and Kalmykova, A., Transposon control mechanisms in telomere biology, Curr. Opin. Genet. Dev., 2018, vol. 49, pp. 56–62.PubMed
32.
Zurück zum Zitat Kour, S. and Rath, P.C., Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain, Int. J. Dev. Neurosci., 2015, vol. 47, pp. 286–297.PubMed Kour, S. and Rath, P.C., Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain, Int. J. Dev. Neurosci., 2015, vol. 47, pp. 286–297.PubMed
33.
Zurück zum Zitat Kour, S. and Rath, P.C., Long noncoding RNAs in aging and age-related diseases, Ageing Res. Rev., 2016, vol. 26, pp. 1–21.PubMed Kour, S. and Rath, P.C., Long noncoding RNAs in aging and age-related diseases, Ageing Res. Rev., 2016, vol. 26, pp. 1–21.PubMed
34.
Zurück zum Zitat Ladoukakis, E., Pereira, V., Magny, E.G., et al., Hundreds of putatively functional small open reading frames in Drosophila, Genome Biol., 2011, vol. 12, p. 118. Ladoukakis, E., Pereira, V., Magny, E.G., et al., Hundreds of putatively functional small open reading frames in Drosophila, Genome Biol., 2011, vol. 12, p. 118.
35.
Zurück zum Zitat Lambowitz, A.M. and Belfort, M., Mobile bacterial group II introns at the crux of eukaryotic evolution, Microbiol. Spectr., 2015, vol. 3, MDNA3-0050-2014. Lambowitz, A.M. and Belfort, M., Mobile bacterial group II introns at the crux of eukaryotic evolution, Microbiol. Spectr., 2015, vol. 3, MDNA3-0050-2014.
36.
Zurück zum Zitat Lauressergues, D., Couzigou, J.M., Clemente, H.S., et al., Primary transcripts of microRNAs encode regulatory peptides, Nature, 2015, vol. 520, no. 7545, pp. 90–93.PubMed Lauressergues, D., Couzigou, J.M., Clemente, H.S., et al., Primary transcripts of microRNAs encode regulatory peptides, Nature, 2015, vol. 520, no. 7545, pp. 90–93.PubMed
37.
Zurück zum Zitat Lee, H.E., Huh, J.W., and Kim, H.S., Bioinformatics analysis of evolution and human disease related transposable element-derived microRNAs, Life (Basel), 2020, vol. 10, p. 95.PubMedCentral Lee, H.E., Huh, J.W., and Kim, H.S., Bioinformatics analysis of evolution and human disease related transposable element-derived microRNAs, Life (Basel), 2020, vol. 10, p. 95.PubMedCentral
38.
Zurück zum Zitat Li, L.J., Leng, R.X., and Fan, Y.G., Translation of noncoding RNAs: focus on lncRNAs, pri-miRNAs, and circRNAs, Exp. Cell Res., 2017, vol. 361, pp. 1–8.PubMed Li, L.J., Leng, R.X., and Fan, Y.G., Translation of noncoding RNAs: focus on lncRNAs, pri-miRNAs, and circRNAs, Exp. Cell Res., 2017, vol. 361, pp. 1–8.PubMed
40.
Zurück zum Zitat Lou, Z., Zhu, J., Li, X., et al., LncRNA Sirt1-AS upregulates Sirt1 to attenuate aging related deep venous thrombosis, Aging (Albany, NY), 2021, vol. 13, pp. 6918–6935. Lou, Z., Zhu, J., Li, X., et al., LncRNA Sirt1-AS upregulates Sirt1 to attenuate aging related deep venous thrombosis, Aging (Albany, NY), 2021, vol. 13, pp. 6918–6935.
41.
Zurück zum Zitat Lu, X., Sachs, F., Ramsay, L., et al., The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity, Nat. Struct. Mol. Biol., 2014, vol. 21, pp. 423–425.PubMed Lu, X., Sachs, F., Ramsay, L., et al., The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity, Nat. Struct. Mol. Biol., 2014, vol. 21, pp. 423–425.PubMed
43.
Zurück zum Zitat Ma, J.J., Ju, X., Xu, R.J., et al., Telomerase reverse transcriptase and p53 regulate mammalian peripheral nervous system and CNS axon regeneration downstream of c-Myc, J. Neurosci., 2019, vol. 39, pp. 9107–9118.PubMedPubMedCentral Ma, J.J., Ju, X., Xu, R.J., et al., Telomerase reverse transcriptase and p53 regulate mammalian peripheral nervous system and CNS axon regeneration downstream of c-Myc, J. Neurosci., 2019, vol. 39, pp. 9107–9118.PubMedPubMedCentral
44.
Zurück zum Zitat Magny, E.G., Pueyo, J.I., Pearl, F.M., et al., Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames, Science, 2013, vol. 341, pp. 1116–1120.PubMed Magny, E.G., Pueyo, J.I., Pearl, F.M., et al., Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames, Science, 2013, vol. 341, pp. 1116–1120.PubMed
45.
Zurück zum Zitat Matsumoto, A., Pasut, A., Matsumoto, M., et al., mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide, Nature, 2017, vol. 541, pp. 228–232.PubMed Matsumoto, A., Pasut, A., Matsumoto, M., et al., mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide, Nature, 2017, vol. 541, pp. 228–232.PubMed
46.
Zurück zum Zitat Maxwell, P.H., What might retrotransposons teach us about aging, Curr. Genet., 2016, vol. 62, pp. 277–282.PubMed Maxwell, P.H., What might retrotransposons teach us about aging, Curr. Genet., 2016, vol. 62, pp. 277–282.PubMed
47.
Zurück zum Zitat Mercer, T.R., Dinger, M.E., Sunkin, S.M., et al., Specific expression of long noncoding RNAs in the mouse brain, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 716–721.PubMedPubMedCentral Mercer, T.R., Dinger, M.E., Sunkin, S.M., et al., Specific expression of long noncoding RNAs in the mouse brain, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 716–721.PubMedPubMedCentral
48.
Zurück zum Zitat Mercer, T.R. and Mattick, J.S., Structure and function of long noncoding RNAs in epigenetic regulation, Nat. Struct. Mol. Biol., 2013, vol. 20, pp. 300–307.PubMed Mercer, T.R. and Mattick, J.S., Structure and function of long noncoding RNAs in epigenetic regulation, Nat. Struct. Mol. Biol., 2013, vol. 20, pp. 300–307.PubMed
49.
Zurück zum Zitat Mueller, C., Aschacher, T., Wolf, B., and Bergmann, M., A role of LINE-1 in telomere regulation, Front. Biosci., 2018, vol. 23, pp. 1310–1319. Mueller, C., Aschacher, T., Wolf, B., and Bergmann, M., A role of LINE-1 in telomere regulation, Front. Biosci., 2018, vol. 23, pp. 1310–1319.
50.
Zurück zum Zitat Mus, E., Hof, P.R., and Tiedge, H., Dendritic BC200 RNA in aging and in Alzheimer’s disease, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 25, pp. 10679–10684.PubMedPubMedCentral Mus, E., Hof, P.R., and Tiedge, H., Dendritic BC200 RNA in aging and in Alzheimer’s disease, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 25, pp. 10679–10684.PubMedPubMedCentral
51.
Zurück zum Zitat Nelson, B.R., Makarewich, C.A., Anderson, D.M., et al., A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle, Science, 2016, vol. 351, pp. 271–275.PubMedPubMedCentral Nelson, B.R., Makarewich, C.A., Anderson, D.M., et al., A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle, Science, 2016, vol. 351, pp. 271–275.PubMedPubMedCentral
52.
Zurück zum Zitat Nichuguti, N. and Fujiwara, H., Essential factors involved in the precise targeting and insertion of telomere-specific non-LTR retrotransposon, SART1Bm, Sci. Rep., 2020, vol. 10, p. 8963.PubMedPubMedCentral Nichuguti, N. and Fujiwara, H., Essential factors involved in the precise targeting and insertion of telomere-specific non-LTR retrotransposon, SART1Bm, Sci. Rep., 2020, vol. 10, p. 8963.PubMedPubMedCentral
53.
Zurück zum Zitat Ng, S.Y., Bogu, G.K., Soh, B.S., and Stanton, L.W., The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis, Mol. Cell, 2013, vol. 51, pp. 349–359.PubMed Ng, S.Y., Bogu, G.K., Soh, B.S., and Stanton, L.W., The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis, Mol. Cell, 2013, vol. 51, pp. 349–359.PubMed
54.
Zurück zum Zitat Park, J. and Belden, W.J., Long non-coding RNAs have age-dependent diurnal expression that coincides with age-related changes in genome-wide facultative heterochromatin, BMC Genomics, 2018, vol. 19, p. 777.PubMedPubMedCentral Park, J. and Belden, W.J., Long non-coding RNAs have age-dependent diurnal expression that coincides with age-related changes in genome-wide facultative heterochromatin, BMC Genomics, 2018, vol. 19, p. 777.PubMedPubMedCentral
55.
Zurück zum Zitat Pavlicev, M., Hiratsuka, K., Swaggart, K., et al., Detecting endogenous retrovirus-driven tissue-specific gene transcription, Genome Biol. Evol., 2015, vol. 7, pp. 1082–1097.PubMedPubMedCentral Pavlicev, M., Hiratsuka, K., Swaggart, K., et al., Detecting endogenous retrovirus-driven tissue-specific gene transcription, Genome Biol. Evol., 2015, vol. 7, pp. 1082–1097.PubMedPubMedCentral
56.
Zurück zum Zitat Pereira Fernandes, D.P., Bitar, M., Jacobs, F.M., and Barry, G., Long non-coding RNAs in neuronal aging, Noncoding RNA, 2018, vol. 4, p. E12.PubMed Pereira Fernandes, D.P., Bitar, M., Jacobs, F.M., and Barry, G., Long non-coding RNAs in neuronal aging, Noncoding RNA, 2018, vol. 4, p. E12.PubMed
57.
Zurück zum Zitat Popa, A., Labrigand, P., Barbry, R., and Waldmann, R., Pateamine A-sensitive ribosome profiling reveals the scope of translation in mouse embryonic stem cells, BMC Genomics, 2016, vol. 17, p. 52.PubMedPubMedCentral Popa, A., Labrigand, P., Barbry, R., and Waldmann, R., Pateamine A-sensitive ribosome profiling reveals the scope of translation in mouse embryonic stem cells, BMC Genomics, 2016, vol. 17, p. 52.PubMedPubMedCentral
58.
Zurück zum Zitat Qian, W., Cai, X., and Qian, Q., Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition, Aging (Albany, NY), 2020, vol. 12, pp. 4322–4336. Qian, W., Cai, X., and Qian, Q., Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition, Aging (Albany, NY), 2020, vol. 12, pp. 4322–4336.
59.
Zurück zum Zitat Rodriguez-Martin, B., Alvarez, E.G., Baez-Ortega, A., et al., Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition, Nat. Genet., 2020, vol. 52, pp. 306–319.PubMedPubMedCentral Rodriguez-Martin, B., Alvarez, E.G., Baez-Ortega, A., et al., Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition, Nat. Genet., 2020, vol. 52, pp. 306–319.PubMedPubMedCentral
60.
Zurück zum Zitat Ruiz-Orera, J., Messeguer, X., Subirana, J.A., and Alba, M.M., Long non-coding RNAs as a source of new peptide, eLife, 2014, vol. 3, p. e03523.PubMedPubMedCentral Ruiz-Orera, J., Messeguer, X., Subirana, J.A., and Alba, M.M., Long non-coding RNAs as a source of new peptide, eLife, 2014, vol. 3, p. e03523.PubMedPubMedCentral
61.
Zurück zum Zitat Schratz, K.E., Extrahematopoietic manifestations of the short telomere syndromes, Hematol. Am. Soc. Educ. Progr., 2020, vol. 2020, pp. 115–122. Schratz, K.E., Extrahematopoietic manifestations of the short telomere syndromes, Hematol. Am. Soc. Educ. Progr., 2020, vol. 2020, pp. 115–122.
62.
Zurück zum Zitat Scheidler, C.M., Kick, L.M., and Schneider, S., Ribosomal peptides and small proteins on the rise, ChemBioChem, 2019, vol. 20, pp. 1479–1486.PubMed Scheidler, C.M., Kick, L.M., and Schneider, S., Ribosomal peptides and small proteins on the rise, ChemBioChem, 2019, vol. 20, pp. 1479–1486.PubMed
63.
Zurück zum Zitat Schroeder, E.A., Raimundo, N., and Shadel, G.S., Epigenetic silencing mediates mitochondria stress-induced longevity, Cell Metab., 2013, vol. 17, pp. 954–964.PubMedPubMedCentral Schroeder, E.A., Raimundo, N., and Shadel, G.S., Epigenetic silencing mediates mitochondria stress-induced longevity, Cell Metab., 2013, vol. 17, pp. 954–964.PubMedPubMedCentral
64.
Zurück zum Zitat Tiwari, B., Jones, A.E., Caillet, C.J., et al., P53 directly repress human LINE1 transposons, Genes. Dev., 2020, vol. 34, pp. 1439–1451.PubMedPubMedCentral Tiwari, B., Jones, A.E., Caillet, C.J., et al., P53 directly repress human LINE1 transposons, Genes. Dev., 2020, vol. 34, pp. 1439–1451.PubMedPubMedCentral
65.
Zurück zum Zitat Trapathi, V., Shen, Z., Chakraborty, A., et al., Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB, PLoS Genet., 2013, vol. 9, p. e1003368. Trapathi, V., Shen, Z., Chakraborty, A., et al., Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB, PLoS Genet., 2013, vol. 9, p. e1003368.
66.
Zurück zum Zitat Trembinski, D.J., Bink, D.I., Theodorou, K., et al., Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction, Nat. Commun., 2020, vol. 11, p. 2039.PubMedPubMedCentral Trembinski, D.J., Bink, D.I., Theodorou, K., et al., Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction, Nat. Commun., 2020, vol. 11, p. 2039.PubMedPubMedCentral
67.
Zurück zum Zitat Trizzino, M., Kapusta, A., and Brown, C.D., Transposable elements generate regulatory novelty in a tissue-specific fashion, BMC Genomics, 2018, vol. 19, p. 468.PubMedPubMedCentral Trizzino, M., Kapusta, A., and Brown, C.D., Transposable elements generate regulatory novelty in a tissue-specific fashion, BMC Genomics, 2018, vol. 19, p. 468.PubMedPubMedCentral
68.
Zurück zum Zitat Wang, H., Iacoangeli, A., Popps, S., et al., Dendritic BC1 RNA: functional role in regulation of translation initiation, J. Neurosci., 2002, vol. 22, no. 23, pp. 10 232–10 241. Wang, H., Iacoangeli, A., Popps, S., et al., Dendritic BC1 RNA: functional role in regulation of translation initiation, J. Neurosci., 2002, vol. 22, no. 23, pp. 10 232–10 241.
69.
Zurück zum Zitat Wang, T., Zeng, J., Lowe, C.B., et al., Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 18 613–18 618. Wang, T., Zeng, J., Lowe, C.B., et al., Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 18 613–18 618.
70.
Zurück zum Zitat Zhang, J., Mujahid, H., Hou, Y., et al., Plant long ncRNAs: a new frontier for gene regulatory control, Am. J. Plant Sci., 2013, vol. 4, no. 5, art. ID 32 139. Zhang, J., Mujahid, H., Hou, Y., et al., Plant long ncRNAs: a new frontier for gene regulatory control, Am. J. Plant Sci., 2013, vol. 4, no. 5, art. ID 32 139.
71.
Zurück zum Zitat Zhao, Y., Yuan, J., and Chen, R., NONCODEv4: Annotation of noncoding RNAs with emphasis on long noncoding RNAs, in Long Non-Coding RNAs: Methods and Protocols, Methods Mol. Biol. Ser., vol. 1402, New York: Springer-Verlag, 2016, pp. 243–254. Zhao, Y., Yuan, J., and Chen, R., NONCODEv4: Annotation of noncoding RNAs with emphasis on long noncoding RNAs, in Long Non-Coding RNAs: Methods and Protocols, Methods Mol. Biol. Ser., vol. 1402, New York: Springer-Verlag, 2016, pp. 243–254.
Metadaten
Titel
Relationship of Peptides and Long Non-Coding RNAs with Aging
verfasst von
R. N. Mustafin
Publikationsdatum
01.10.2021
Verlag
Pleiades Publishing
Schlagwort
COVID-19
Erschienen in
Advances in Gerontology / Ausgabe 4/2021
Print ISSN: 2079-0570
Elektronische ISSN: 2079-0589
DOI
https://doi.org/10.1134/S2079057021040081

Weitere Artikel der Ausgabe 4/2021

Advances in Gerontology 4/2021 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 49 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Wie der Klimawandel gefährliche Pilzinfektionen begünstigt

24.05.2024 Candida-Mykosen Nachrichten

Dass sich invasive Pilzinfektionen in letzter Zeit weltweit häufen, liegt wahrscheinlich auch am Klimawandel. Ausbrüche mit dem Hefepilz Candida auris stellen eine zunehmende Gefahr für Immungeschwächte dar – auch in Deutschland.

So wirken verschiedene Alkoholika auf den Blutdruck

23.05.2024 Störungen durch Alkohol Nachrichten

Je mehr Alkohol Menschen pro Woche trinken, desto mehr steigt ihr Blutdruck, legen Daten aus Dänemark nahe. Ob es dabei auch auf die Art des Alkohols ankommt, wurde ebenfalls untersucht.

Das sind die führenden Symptome junger Darmkrebspatienten

Darmkrebserkrankungen in jüngeren Jahren sind ein zunehmendes Problem, das häufig längere Zeit übersehen wird, gerade weil die Patienten noch nicht alt sind. Welche Anzeichen Ärzte stutzig machen sollten, hat eine Metaanalyse herausgearbeitet.

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.