Skip to main content
Erschienen in: Breast Cancer Research 1/2021

Open Access 01.12.2021 | Research article

Early-life exposures and age at thelarche in the Sister Study cohort

verfasst von: Mandy Goldberg, Aimee A. D’Aloisio, Katie M. O’Brien, Shanshan Zhao, Dale P. Sandler

Erschienen in: Breast Cancer Research | Ausgabe 1/2021

Abstract

Background

Early age at breast development (thelarche) has been associated with increased breast cancer risk. Average age at thelarche has declined over time, but there are few established risk factors for early thelarche. We examined associations between pre- and postnatal exposures and age at thelarche in a US cohort of women born between 1928 and 1974.

Methods

Breast cancer-free women ages 35–74 years who had a sister diagnosed with breast cancer were enrolled in the Sister Study from 2003 to 2009 (N = 50,884). At enrollment, participants reported information on early-life exposures and age at thelarche, which we categorized as early (≤ 10 years), average (11–13 years), and late (≥ 14 years). For each exposure, we estimated odds ratios (ORs) and 95% confidence intervals (CIs) for early and late thelarche using polytomous logistic regression, adjusted for birth cohort, race/ethnicity and family income level in childhood.

Results

Early thelarche was associated with multiple prenatal exposures: gestational hypertensive disorder (OR = 1.25, 95% CI 1.09–1.43), diethylstilbestrol use (OR = 1.23, 95% CI 1.04–1.45), smoking during pregnancy (OR = 1.20, 95% CI 1.13–1.27), young maternal age (OR 1.30, 95% CI 1.16–1.47 for < 20 vs. 25–29 years), and being firstborn (OR = 1.25, 95% CI 1.17–1.33). Birthweight < 2500 g and soy formula use in infancy were positively associated with both early and late thelarche.

Conclusions

Associations between pre- and postnatal exposures and age at thelarche suggest that the early-life environment influences breast development and therefore may also affect breast cancer risk by altering the timing of pubertal breast development.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13058-021-01490-z.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BFHS
Bayesian family history score
BMI
Body mass index
DES
Diethylstilbestrol
CI
Confidence interval
OR
Odds ratio

Background

While age at menarche is an established breast cancer risk factor [1], earlier age at onset of breast development (thelarche) has also recently been linked to increased breast cancer risk, independent of age at menarche [2, 3]. Identifying modifiable risk factors associated with early thelarche may provide an opportunity for primary prevention of breast cancer by delaying the onset of pubertal breast development. Apart from larger childhood body size [4, 5], however, there are few established risk factors for early thelarche.
A recent meta-analysis estimated that age at thelarche has declined at a rate of 3-months per decade over the past 50 years [6]. This rapid rate of decline suggests that environmental factors, acting independently or interacting with genetic susceptibility, are driving the secular trend [7]. Factors hypothesized to influence the timing of thelarche include nutritional factors, psychosocial stressors, and exposure to endocrine-disrupting chemicals, as well as conditions affecting the intrauterine environment [68].
Our objective was to examine associations between pre- and postnatal exposures and age at thelarche in a prospective US cohort of women born between 1928 and 1974. We further examined whether associations between early-life exposures and age at thelarche were modified by other factors associated with early thelarche, including being born in a more recent birth cohort [6], African-American/Black or Hispanic/Latina identity [4], lower socioeconomic status [9], and increased familial risk of breast cancer [10].

Methods

Study population

The Sister Study is a prospective cohort designed to investigate environmental and genetic risk factors for breast cancer (for more details, see [11]). From 2003 to 2009, 50,884 women enrolled in the cohort. Women were eligible if they lived in the USA including Puerto Rico, were between the ages of 35–74 years, and had a sister diagnosed with breast cancer, but were breast cancer-free themselves at enrollment.
Women completed a computer-assisted telephone interview at baseline which included information on demographics, reproductive and lifestyle factors, and medical and family history. Women also completed a self-administered family history questionnaire that included questions about potential maternal, in utero and infancy exposures. We utilized baseline data from Sister Study Data Release 7.2 for this analysis.
All participants provided written informed consent. The institutional review board of the National Institutes of Health approved the study.

Pubertal timing assessment

At the baseline interview, women reported the age in years when they first noticed their breasts developing. Alternatively, women reported their grade in school, which we converted to age (1.2% of the cohort reported grade only). We excluded women who reported that thelarche occurred at age 21 or older, which we considered to be implausible. We categorized timing of thelarche as early (≤ 10 years), average (11–13 years) and late (≥ 14 years) based on the distribution of age at thelarche in the cohort (Additional file 1: Fig. S1). Women also reported their age at menarche, which we categorized as early (≤ 11 years), average (12–13 years) and late (≥ 14 years).

Early-life exposure assessment

We considered participants’ perinatal environment, which included what they may have been exposed to while in utero or during infancy. In utero exposures included mothers’ exposures to pre-pregnancy and pregnancy-related diabetes, pregnancy-related hypertension, pre-eclampsia, eclampsia or toxemia, diethylstilbestrol (DES) use during pregnancy, living or working on a farm during pregnancy, and smoking during pregnancy using four response categories. For all of these, we considered responses of “definitely” and “probably” as exposed and categorized “probably not” and “definitely not” as unexposed. We defined gestational diabetes as a report of pregnancy-related diabetes and no report of pre-pregnancy diabetes, and gestational hypertension as a report of pregnancy-related hypertension and no report of pre-eclampsia, eclampsia, or toxemia. We did not collect information on type of pre-pregnancy diabetes or on pre-pregnancy hypertension. We also considered any diabetes and any gestational hypertensive disorder. Maternal age at the participant’s birth was reported continuously, with categorical options provided if the participant did not know the exact age.
Additional birth- and infancy-related exposures we considered were birthweight, gestational age, multiple gestation, birth order, and type of infant feeding. Participants reported their own birthweight in pounds and ounces. If unknown, they were asked if they weighed more or less than 5lbs at birth. We converted birthweight to grams and categorized it into clinically relevant categories (< 2500 g, 2500–3999 g and ≥ 4000 g). Participants reported whether they were born within one week of their mothers’ due date, and if not, whether they were born less than 2 weeks, 2–4 weeks, 1–2 months, or more than 2 months before or after. We categorized gestational age at birth as born ≥ 1 month before, 2–4 weeks before, or not born ≥ 2 weeks before the due date. Participants reported if they were part of a multiple birth (including stillbirths). We classified participants as firstborn or not based on the birth dates of full siblings and maternal half-siblings ascertained in baseline questionnaires. Participants reported if they were ever breastfed and if they were ever fed soy formula as an infant separately using four response categories, which we dichotomized as described for maternal exposures.

Covariate assessment

We categorized birth year into approximately 10-year intervals (1928–1939, 1940–1949, 1950–1959 and 1960–1974). Women self-identified their race as American Indian or Alaska Native, Asian, Black or African-American, Native Hawaiian or other Pacific Islander, and/or White. They also reported if they considered their ethnicity to be Hispanic or Latina. We categorized race/ethnicity as non-Hispanic White, non-Hispanic African-American/Black, Hispanic/Latina, and others, which included women who identified as Asian/Pacific Islander, American Indian/Alaska native, or who did not specify race, and did not identify as Hispanic/Latina. Qualitative family income level growing up (well-off, middle income, low income, or poor) and relative weight at age 10 (heavier, same weight as, or lighter than peers) were both reported at enrollment. We also collected detailed information on breast cancer family history, which we used to calculate a continuous Bayesian family history score (BFHS) to assess familial risk. This score was developed in the Sister Study cohort and incorporates family size, number and age at diagnosis of breast cancer cases in first-degree relatives, and current age or age at death for non-cases (for more details, see [12, 13]).

Analytic sample

Of the 50,884 women enrolled in the cohort, we excluded 3 women who withdrew their data and 810 women who did not complete the family history questionnaire (Additional file 2: Fig. S2). Since we were interested in in utero exposures, we also excluded women who reported that they were adopted (n = 188). We excluded 609 women with missing age at thelarche (n = 576) or thelarche reported at age 21 or older (n = 33). Lastly, we excluded women with missing data on race/ethnicity and/or childhood family income (n = 112). This left an analytic sample of 49,162 women.

Statistical analysis

We examined the distributions of demographic and early-life factors by timing of thelarche. We used polytomous logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for associations of early-life exposures with early (≤ 10) and late thelarche (≥ 14) relative to average age (11–13 years). We adjusted for birth cohort, race/ethnicity, and childhood family income. We additionally adjusted for relative weight at age 10 to examine whether associations were independent of childhood body size, but we did not conduct a formal mediation analysis due to ambiguity about the relative timing since thelarche ranged from 4 to 20 years. We excluded 129 women with missing data for relative weight at age 10 from these analyses.
We examined whether associations between early-life exposures and timing of thelarche were modified by birth cohort, race/ethnicity, childhood family income and relative weight at age 10 through stratification and tested for statistical heterogeneity using a likelihood ratio test. We estimated stratum-specific associations for non-Hispanic White, non-Hispanic African-American/Black and Hispanic/Latina women only. We examined effect modification by extent of breast cancer family history using the continuous BFHS and also stratified by BFHS, dichotomized at the median.
We examined alternative modeling strategies for age at thelarche in sensitivity analyses. We considered age ≥ 13 years as late versus a referent group of 11–12 years. We categorized age at thelarche in 7 groups (≤ 9, 10, 11, 12 (referent), 13, 14 and ≥ 15 years) to explore associations with very early or very late thelarche. We also examined age at thelarche as a continuous outcome using linear regression to quantify the difference in years between exposure groups.
The proportion of missing data for early-life exposures in analyses using the entire sample ranged from < 0.1% for multiple birth to about 25% for gestational hypertensive disorders and birthweight. Gestational age at birth was missing for > 50%. Therefore, we also conducted multiple imputation analyses for all early-life exposures under the assumption that data were missing at random, conditional on the specified covariates. The imputation models included the outcome, all early-life exposures, all covariates, age at menarche, and whether the participant’s mother was alive at baseline, which was a predictor of missing early-life exposure data. We used chained equations to generate 50 imputed datasets. All participants were included in the imputation models, but analysis models were restricted to the 49,162 eligible women (Additional file 2: Fig. S2). We then ran three sets of adjusted models for early and late thelarche in the imputed datasets and combined effect estimates across datasets using Rubin’s rules [14]. Model 1 included birth cohort, race/ethnicity and childhood family income to match the complete case analysis. Model 2 additionally adjusted for maternal age and firstborn status. Model 3 mutually adjusted for early-life exposures based on a directed acyclic graph (Additional file 3: Fig. S3), with different adjustment sets for each early-life exposure.
We conducted sensitivity analyses restricted to women less than 60 years at baseline, under the hypothesis that reporting errors were likely greater for older women. In separate analyses, we restricted to women whose mothers were alive at baseline, allowing participants to potentially consult their mothers about early-life exposures, which may have improved accuracy. We excluded women who reported thelarche before age 8 years or at age 16 or later in sensitivity analyses to examine whether these extremes were driving the primary associations that we observed. Since age at menarche is correlated with age at thelarche (r = 0.6), but may be more accurately reported, we ran complementary analyses examining associations between early-life exposures and timing of menarche. We also examined associations with early thelarche (≤ 10 years) and/or early menarche (≤ 11 years) relative to experiencing neither event at an early age under the hypothesis, based on the correlation between ages at thelarche and menarche, that women who reported both events at an early age may have been more accurate in their recall of early pubertal onset than women who reported early thelarche or early menarche only. Women who reported early thelarche only have a longer time from thelarche to menarche, or pubertal tempo, and women with early menarche only have a shorter tempo, compared with women with both early thelarche and menarche. In the context of our data, relatively long or short tempo may indicate error in the recall of age at thelarche, but could also reflect true differences in tempo, which may also be biologically relevant for breast cancer risk [2].
We conducted all analyses using SAS 9.4 (SAS Institute Inc, Cary, NC).

Results

The average age at thelarche was 12.2 years (median: 12, range: 4–20). Approximately 97% of women reported that thelarche occurred between ages 8 and 15 years, while < 0.1% reported thelarche before 8 years of age and 3% reported thelarche at age 16 or later. Early thelarche (≤ 10 years) was more common in non-Hispanic African-American/Black and Hispanic/Latina women, those born after 1960, and those who grew up in a poor household (Table 1).
Table 1
Distribution of age at thelarche by participant characteristics among 49,162 eligible women in the Sister Study cohort
 
Age at thelarche
Early (≤ 10 years)
Average (11–13 years)
Late (≥ 14 years)
n
%
n
%
n
%
Number of participants
6613
13
34,030
69
8519
17
Participant characteristics
Birth cohort
 1928–1939
613
10
4220
72
1045
18
 1940–1949
2116
13
11,403
71
2607
16
 1950–1959
2469
14
12,619
69
3186
17
 1960–1974
1415
16
5788
65
1681
19
Race/ethnicity
 Non-Hispanic White
5275
13
29,141
70
7015
17
 Non-Hispanic African-American/Black
754
18
2,517
61
835
20
 Hispanic/Latina
422
18
1,525
65
399
17
 Othersa
162
13
847
66
270
21
Family income level growing up
 Well off
436
14
2,194
70
507
16
 Middle income
3863
13
20,597
70
4899
17
 Low income
1739
14
8,693
68
2331
18
 Poor
575
15
2,546
65
782
20
Maternal vital status at baseline
 Alive
3198
14
15,788
69
4040
18
 Deceased
3408
13
18,196
70
4465
17
 Missing
7
 
46
 
14
 
Maternal pregnancy characteristics
Diabetes
 Any (pre-pregnancy or gestational)
77
17
307
67
74
16
 None
5816
13
30,259
69
7519
17
 Missing
720
 
3464
 
926
 
Gestational hypertensive disorder
 Any (gestational hypertension or pre-eclampsia)
285
17
1144
67
280
16
 None
4708
13
24,505
69
6086
17
 Missing
1620
 
8381
 
2153
 
DES use
 Yes
181
16
770
67
191
17
 No
5399
13
28,273
70
6969
17
 Missing
1033
 
4987
 
1359
 
Smoking during pregnancy
 Yes
2201
15
10,131
68
2546
17
 No
4086
13
22,236
70
5553
17
 Missing
326
 
1663
 
420
 
Farm exposure
 Work and residence
770
13
3977
69
983
17
 Work only
88
14
409
65
130
21
 Residence only
269
13
1458
71
313
15
 None
5263
13
27,132
69
6774
17
 Missing
223
 
1054
 
319
 
Age at delivery
 < 20 years
403
17
1544
66
387
17
 20–24 years
1626
14
7916
69
1970
17
 25–29 years
1904
13
10,189
69
2586
18
 30–34 years
1419
13
7873
70
1916
17
 35–39 years
854
13
4464
70
1096
17
 ≥ 40 years
314
13
1672
69
444
18
 Missing
93
 
372
 
120
 
Birth and infancy characteristics
Firstborn
 Yes
1699
15
7931
70
1664
15
 No
4877
13
25,915
69
6814
18
 Missing
37
 
184
 
41
 
Birthweight
 < 2500 g
532
14
2505
67
692
19
 2500–3999 g
4028
14
20,577
70
4900
17
 ≥ 4000 g
452
14
2331
70
555
17
 Missing
1601
 
8617
 
2372
 
Multiple birth
 Yes
182
12
1062
69
297
19
 No
6430
14
32,963
69
8,221
17
 Missing
1
 
5
 
1
 
Gestational age at birth
 Born ≥ 1 month before due date
126
13
672
68
192
19
 Born 2–4 weeks before due date
279
15
1324
70
301
16
 Not born ≥ 2 weeks before due date
2784
14
13,773
69
3383
17
 Missing
3424
 
18,261
 
4643
 
Ever breastfed
 Yes
2993
13
15,608
70
3768
17
 No
3147
14
15,923
69
4046
18
 Missing
473
 
2499
 
705
 
Ever fed soy formula
 Yes
179
15
797
67
219
18
 No
5261
13
27,471
69
6827
17
 Missing
1173
 
5762
 
1473
 
Row percentages are displayed. Percentages may not add up to 100 due to rounding. Missing are not included in percentages
aIncludes non-Hispanic Asian-Americans and Pacific Islanders (25%), non-Hispanic American Indians and Alaska natives (7%), and non-Hispanic race not specified (68%)
Early thelarche was associated with multiple pre- and postnatal exposures, while few associations were observed with late thelarche (Table 2). Maternal gestational hypertensive disorders, DES use, maternal smoking during pregnancy and having a teenage mother were each associated with a 20–30% increased odds of early thelarche in daughters. Maternal diabetes prior to pregnancy was associated with more than a 70% increased likelihood of early thelarche, but there was no association between gestational diabetes and early thelarche. Being firstborn was positively associated with early thelarche and inversely associated with late thelarche, while the opposite pattern was observed for being part of a multiple birth. Preterm birth (born ≥ 1 month before due date) was also positively associated with late thelarche. Low birthweight (< 2500 g) was positively associated with early and late thelarche relative to average birthweight (2500–3499 g), while no associations were observed for high birthweight (≥ 4000 g). A similar U-shaped pattern was observed for soy formula in infancy. Being breastfed in infancy was not associated with early thelarche, though we observed a minor decrease in the odds of late thelarche.
Table 2
Associations between early-life exposures and timing of thelarche in the Sister Study cohort (N = 49,162)
  
Early thelarche (≤ 10 years)a,b
Late thelarche (≥ 14 years)a,b
N
OR
95% CI
OR
95% CI
Maternal pregnancy characteristics
Diabetes
 Any
458
1.20
0.93, 1.54
0.91
0.70, 1.17
  Gestational diabetes
215
0.79
0.52, 1.21
0.87
0.60, 1.25
  Pre-pregnancy diabetes
223
1.72
1.24, 2.38
0.88
0.60, 1.29
 None
43,594
1
Ref
1
Ref
Gestational hypertensive disorder
 Any
1709
1.25
1.09, 1.43
0.96
0.84, 1.10
  Pre-eclampsia
887
1.32
1.10, 1.58
0.99
0.83, 1.19
  Gestational hypertension
626
1.12
0.90, 1.40
0.80
0.64, 1.01
 None
35,299
1
Ref
1
Ref
DES use
 Yes
1142
1.23
1.04, 1.45
1.02
0.86, 1.19
 No
40,641
1
Ref
1
Ref
Smoking during pregnancy
 Yes
14,878
1.20
1.13, 1.27
1.02
0.97, 1.08
 No
31,875
1
Ref
1
Ref
Farm exposure
 Work and residence
5730
1.00
0.92, 1.09
0.94
0.87, 1.02
 Work only
627
1.06
0.84, 1.33
1.21
0.99, 1.48
 Residence only
2040
0.98
0.86, 1.12
0.86
0.76, 0.98
 None
39,169
1
Ref
1
Ref
Age at delivery
 < 20 years
2334
1.30
1.16, 1.47
0.93
0.82, 1.05
 20–24 years
11,512
1.09
1.01, 1.17
0.97
0.91, 1.03
 25–29 years
14,679
1
Ref
1
Ref
 30–34 years
11,208
0.95
0.88, 1.02
0.95
0.89, 1.01
 35–39 years
6414
0.99
0.90, 1.08
0.94
0.87, 1.02
 ≥ 40 years
2430
0.95
0.83, 1.08
1.00
0.89, 1.12
Birth and infancy characteristics
Firstborn
 Yes
11,294
1.25
1.17, 1.33
0.84
0.79, 0.89
 No
37,606
1
Ref
1
Ref
Birthweight
 < 2500 g
3729
1.06
0.96, 1.17
1.15
1.05, 1.25
 2500–3999 g
29,505
1
Ref
1
Ref
 ≥ 4000 g
3,338
1.00
0.90, 1.11
0.99
0.90, 1.09
Multiple birth
 Yes
1541
0.87
0.74, 1.02
1.11
0.98, 1.27
 No
47,614
1
Ref
1
Ref
Gestational age at birth
 Born ≥ 1 month before due date
990
0.91
0.75, 1.11
1.16
0.99, 1.37
 Born 2–4 weeks before due date
1904
1.06
0.92, 1.21
0.93
0.81, 1.06
 Not born ≥ 2 weeks before due date
19,940
1
Ref
1
Ref
Ever breastfed
 Yes
22,369
0.98
0.93, 1.04
0.95
0.90, 1.00
 No
23,116
1
Ref
1
Ref
Ever fed soy formula
     
 Yes
1195
1.10
0.93, 1.30
1.07
0.92, 1.25
 No
39,559
1
Ref
1
Ref
aAdjusted for birth cohort, race/ethnicity and childhood family income
bReferent group is thelarche at 11–13 years
Associations were similar in models adjusted for relative weight at 10 years of age, except for birthweight (Additional file 4: Table S1). Adjusting for relative weight, low birthweight was associated with early (OR = 1.16, 95% CI 1.05–1.28), but not late (OR = 1.03, 95% CI 0.94–1.13) thelarche. In addition, high birthweight was inversely associated with early (OR = 0.90, 95% CI 0.81–1.00) and positively associated with late (OR = 1.09, 95% CI 0.99–1.21) thelarche. Patterns were similar within strata of childhood weight (Additional file 5: Table S2, birthweight p for heterogeneity by childhood weight = 0.99).
Patterns of association were similar across strata of birth cohort (Additional file 6: Table S3), race/ethnicity (Additional file 7: Table S4), childhood family income (Additional file 8: Table S5) and extent of breast cancer family history (Additional file 9: Table S6). The positive association of soy formula in infancy with early thelarche was only observed among women born in 1960–1974 (OR = 1.34, 95% CI 1.03–1.74), non-Hispanic African-American/Black women (OR = 1.63, 95% CI 1.02–2.60) and women who grew up in a poor family (OR = 1.70, 95% CI 1.00–2.90), though the interaction was statistically significant for childhood family income only (p = 0.02).
Results were similar when thelarche at 11–12 years was used as the referent group (data not shown). Associations were generally stronger in magnitude when we considered very early thelarche (≤ 9 years) (Additional file 10: Table S7). U-shaped associations of low birthweight and soy formula with age at thelarche were more prominent in the model that included 7 thelarche categories. The inference for most early-life exposures and timing of thelarche was similar when age at thelarche was modeled continuously using linear regression (Additional file 10: Table S7). Exceptions include DES use, which was not associated with thelarche when modeled continuously, along with low birthweight and soy formula, which were positively associated with both early and late thelarche in the polytomous models.
Results were nearly identical in multiple imputation analyses (Additional file 11: Table S8). The inference also was unchanged in analyses limited to either women younger than 60 years or women whose mother was still living at baseline (data not shown), except that pre-pregnancy diabetes was no longer associated with early thelarche after excluding women whose mother was deceased at baseline. Results were similar for all exposures in sensitivity analyses excluding women with extremely early (< 8 years) or late (≥ 16 years) thelarche (data not shown). Patterns were similar when we examined early-life exposures in relation to age at menarche as a marker of pubertal timing instead of thelarche (Additional file 12: Table S9). Associations of early-life exposures with early thelarche and early menarche were generally stronger in magnitude than associations with early thelarche or early menarche only, except for birthweight and gestational age (Additional file 13: Table S10).

Discussion

Multiple pre- and postnatal exposures were associated with early thelarche in a diverse, nationwide cohort of women with a family history of breast cancer. Associations did not meaningfully vary by birth cohort, race/ethnicity, socioeconomic status, or extent of breast cancer family history. Our findings support the hypothesis that the early-life environment influences the timing of pubertal breast development, especially in sub-groups who experience differential burdens of early thelarche.
Maternal pre-pregnancy obesity is a risk factor for developing gestational hypertensive disorders in pregnancy [15] and has also been associated with earlier thelarche in daughters in contemporary cohorts [16, 17]. We did not collect data on maternal pre-pregnancy body mass index (BMI), which may underlie the observed associations of gestational hypertensive disorders and maternal pre-pregnancy diabetes with earlier thelarche. In the Danish National Birth Cohort (DNBC), crude differences in mean age at thelarche in daughters of women with gestational hypertensive disorders compared to daughters of women with normotensive pregnancies were attenuated after adjustment for maternal pre-pregnancy BMI and other factors [18]. In contrast, a Norwegian case–control study found that daughters exposed to pre-eclamptic pregnancies were less likely to experience thelarche by 10.8 years of age than daughters of normotensive mothers, independent of maternal BMI, but only among exclusively breastfed girls [19].
We did not observe an association between gestational diabetes and age at thelarche, consistent with two prospective studies of girls enrolled in the Kaiser Permanente Northern California (KPNC) health system [17, 20]. In DNBC, there was no difference in mean age at thelarche in daughters of women with gestational diabetes, type 1 diabetes or type 2 diabetes after adjustment for maternal confounders, including pre-pregnancy BMI [21]. A prior, small study (n = 310 girls) within the DNBC found that daughters of women with gestational diabetes experienced earlier thelarche than controls, but did not adjust for maternal confounders [22].
We found that women exposed in utero to DES, a potent synthetic estrogen, were more likely to experience early thelarche. Earlier vaginal opening, an estrogen-mediated marker of pubertal onset analogous to thelarche in humans [23, 24], has been observed in rodents exposed to DES during gestation [25]. A study of 30 DES-exposed daughters and 30 controls found no difference in mean age at thelarche associated with DES [26]. While strengths of that study were the use of medical record-confirmed history of prenatal DES exposure and shorter recall time for age at thelarche (recalled at ages 17–30), the small sample size, women with abnormal Pap smears as controls, and lack of control for confounding could explain the lack of association with age at thelarche. We did not observe an association when age at thelarche was modeled as a continuous outcome. This is in line with previous studies, including in our cohort and a cohort with record-confirmed DES exposure, that observed an increased risk of very early menarche (≤ 10 years) in DES daughters [27, 28], while others did not observe a difference in mean age at menarche [26, 29, 30].
Women who were fed soy formula in infancy, which includes high concentrations of phytoestrogens, including genistein [31, 32], were more likely to experience very early and very late thelarche. The effects of phytoestrogens on reproductive development in animal and human studies have varied by timing and dose of exposure [33]. Experimental evidence in mice has observed opposing effects on pubertal onset associated with neonatal genistein administration: mice administered low-dose genistein had earlier vaginal opening, while those administered a high dose had later opening [34]. Three small prospective studies of girls fed soy formula in infancy did not observe differences in breast bud volume [35] or timing of pubertal breast development [36, 37] compared with those fed cow’s milk formula or breastmilk. The association we observed with early thelarche was specific to African-American/Black women and those who grew up in poor households, two groups at increased risk of early thelarche [4, 9]. Our results may be explained by residual confounding, as families who choose soy formula may differ in other ways that affect timing of thelarche. We did not observe later thelarche in women who were breastfed in infancy, as has been observed in some [3840], but not all [41], prospective cohorts.
Higher in utero estrogen exposure also may explain the earlier age at thelarche we observed in firstborn daughters, as maternal estrogens are higher in first compared to subsequent full-term pregnancies [42]. Higher cord blood estrogen concentrations have also been observed in firstborn compared with later born children [43]. Being firstborn was associated with earlier thelarche in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort [44] and earlier pubarche, but not thelarche, in the Hong Kong Children of 1997 birth cohort [45]. We also observed earlier thelarche in daughters of teenage mothers, who are more likely to be firstborn, though these associations were independent of one another.
While cigarette smoke is thought to be anti-estrogenic, it includes thousands of chemicals, including reproductive and developmental toxicants and endocrine disruptors, that may affect pubertal timing [46]. Although rates of smoking during pregnancy have decreased in the USA in more recent birth cohorts [47], smoking during pregnancy is still prevalent in many countries [48]. About one-third of the women in our cohort reported that their mother smoked during pregnancy, which was associated with earlier thelarche. Two studies conducted in prospective European cohorts, in which approximately 20–30% of girls were exposed to maternal smoking during pregnancy, also observed associations with earlier thelarche [44, 49]. In a US cohort of girls born in the late 1990s in which < 10% were exposed to prenatal smoke, no association was observed overall with age at thelarche [50].
Low birthweight was associated with early and late thelarche, while being born more than a month early and being part of a multiple gestation, conditions associated with low birthweight, were both associated with later thelarche. Findings from previous studies examining birthweight, size for gestational age and/or preterm birth with age at thelarche have been inconsistent [44, 5160]. High birthweight is associated with childhood obesity [61], a risk factor for early thelarche [4]. In our data, women with high birthweight were more likely to report that they were heavier than their peers at age 10, while women with low birthweight were more likely to report that they were lighter than their peers; relative weight at age 10 was inversely associated with age at thelarche (data not shown). However, low birthweight infants are more likely to experience rapid postnatal growth [62], which is also associated with earlier thelarche [44, 60]. We hypothesize that the U-shaped association that we observed overall with low birthweight may reflect modification by postnatal growth patterns. Postnatal growth may also explain the change in the association between birthweight and age at thelarche when we controlled for childhood body size by adjustment or stratification. High birthweight babies may regress toward the mean after birth through slower or catch-down growth [63]. While we do not have data to examine the influence of postnatal growth directly, our finding that low birthweight was positively associated with early thelarche while high birthweight was associated with late thelarche in models stratified by childhood body size suggest that, among girls of similar body size at age 10, those that grew more rapidly between birth and age 10 experienced earlier thelarche, while those that grew more slowly between birth and age 10 experienced later thelarche. Alternatively, other factors that influence fetal growth could underlie the associations we observed between birthweight and age at thelarche.
The average age at thelarche of 12 years in our cohort was about a year later than what has been reported in prospective studies of women born around the same time [64]. The distribution of age at thelarche in our cohort was slightly right-skewed, which also suggests that women in our cohort may have recalled a later age at thelarche than when it truly occurred. While some misreporting of recalled age at thelarche is likely, categorizing age at thelarche as early, average and late may have minimized measurement error, as has been observed for age at menarche [65]. The prevalence of early thelarche increased in successive birth cohorts and early thelarche was more common in Black and Hispanic women. These demographic differences are consistent with prospective thelarche data [4, 6], suggesting that our recalled measure likely captured women who experienced thelarche relatively early compared to their peers, even if there was error in the recall of the absolute age. Associations of early-life exposures with early and late age at menarche, which previous studies have shown is reliably reported into adulthood [66] and is correlated with age at thelarche [64], were similar to the associations we observed with early and late thelarche, which suggests that measurement error in recalled age at thelarche is unlikely to explain our findings. In addition, associations were generally stronger in magnitude for women who reported both early thelarche and early menarche, suggesting that misreporting of age at thelarche may have biased the results of our primary analyses of early thelarche toward the null. An alternate interpretation of this analysis is that stronger associations of early-life exposures with early ages at thelarche and menarche, compared with associations of early-life exposures with early thelarche without early menarche, reflect an association of these exposures with shorter pubertal tempo. However, potential measurement error in addition to imprecision in the assessment of ages at both thelarche and menarche, recalled to the nearest year, makes it difficult to accurately assess pubertal tempo using retrospective data, so it is not clear the extent to which this analysis captures true differences in tempo.
Strengths of this study include the large sample size and wide range of pre- and postnatal exposures. We were able to examine past exposures that are no longer used at all or as frequently, such as DES use and smoking during pregnancy, but are informative for current exposures to endocrine-disrupting chemicals [67]. We were limited by recalled data on early-life exposures, which may be reported with error. Participants were provided with a prepaid phone card and encouraged to contact their mothers or other relatives for assistance in completing the early-life exposure information, but we do not know how many women did. In a validation study, a sample of 1,800 mothers of participants under 60 years of age at enrollment completed a similar questionnaire on pregnancy-related factors. Agreement between daughter’s and mother’s report was good for most exposures, with kappas ranging from 0.6 (pre-eclampsia) to 0.9 (birth order, maternal age).
Our results may be subject to confounding by other unmeasured factors such as pre-pregnancy BMI, gestational weight gain, and genetic influences, as well as residual confounding or variation by socioeconomic factors. While we consider the diversity of our cohort to be a strength, we had reduced precision in stratified analyses in some groups, such as racial/ethnic minorities. Women in our cohort have at least one sister with breast cancer, and have, on average, approximately twice the risk of breast cancer as women without a first-degree family history [68]. While we observed no differences by extent of familial risk, our results may not be generalizable to women without a family history of breast cancer. Nonetheless, it is important to examine risk factors for early thelarche, a breast cancer risk factor, among women at increased risk of breast cancer due to their family history as these women may derive the most benefit from early-life interventions to reduce their lifetime risk of breast cancer.

Conclusions

Our findings suggest that the early-life environment influences breast development and may influence the risk of breast cancer by altering the timing of pubertal onset. Our results also support the hypothesis that environmental factors acting early in life, including maternal pregnancy complications and exposure to endocrine-disrupting chemicals, contribute to the secular decline in age at thelarche, which may lead to future increases in breast cancer incidence.

Declarations

All participants provided written informed consent. The institutional review board of the National Institutes of Health approved the study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary Information

Literatur
1.
Zurück zum Zitat Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13(11):1141–51.PubMedCentralCrossRef Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13(11):1141–51.PubMedCentralCrossRef
2.
Zurück zum Zitat Bodicoat DH, Schoemaker MJ, Jones ME, McFadden E, Griffin J, Ashworth A, et al. Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. Breast Cancer Res. 2014;16(1):R18.PubMedPubMedCentralCrossRef Bodicoat DH, Schoemaker MJ, Jones ME, McFadden E, Griffin J, Ashworth A, et al. Timing of pubertal stages and breast cancer risk: the Breakthrough Generations Study. Breast Cancer Res. 2014;16(1):R18.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Goldberg M, D’Aloisio AA, O’Brien KM, Zhao S, Sandler DP. Pubertal timing and breast cancer risk in the Sister Study cohort. Breast Cancer Res. 2020;22(1):1–11.CrossRef Goldberg M, D’Aloisio AA, O’Brien KM, Zhao S, Sandler DP. Pubertal timing and breast cancer risk in the Sister Study cohort. Breast Cancer Res. 2020;22(1):1–11.CrossRef
4.
Zurück zum Zitat Biro FM, Greenspan LC, Galvez MP, Pinney SM, Teitelbaum S, Windham GC, et al. Onset of breast development in a longitudinal cohort. Pediatrics. 2013;132(6):1019–27.PubMedPubMedCentralCrossRef Biro FM, Greenspan LC, Galvez MP, Pinney SM, Teitelbaum S, Windham GC, et al. Onset of breast development in a longitudinal cohort. Pediatrics. 2013;132(6):1019–27.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Brix N, Ernst A, Lauridsen LLB, Parner ET, Arah OA, Olsen J, et al. Childhood overweight and obesity and timing of puberty in boys and girls: cohort and sibling-matched analyses. Int J Epidemiol. 2020;49(3):834–44.PubMedPubMedCentralCrossRef Brix N, Ernst A, Lauridsen LLB, Parner ET, Arah OA, Olsen J, et al. Childhood overweight and obesity and timing of puberty in boys and girls: cohort and sibling-matched analyses. Int J Epidemiol. 2020;49(3):834–44.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Eckert-Lind C, Busch AS, Petersen JH, Biro FM, Butler G, Bräuner EV, et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: a systematic review and meta-analysis. JAMA Pediatr. 2020;174(4):1–11.CrossRef Eckert-Lind C, Busch AS, Petersen JH, Biro FM, Butler G, Bräuner EV, et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: a systematic review and meta-analysis. JAMA Pediatr. 2020;174(4):1–11.CrossRef
7.
Zurück zum Zitat Lee Y, Styne D. Influences on the onset and tempo of puberty in human beings and implications for adolescent psychological development. Horm Behav. 2013;64(2):250–61.PubMedCrossRef Lee Y, Styne D. Influences on the onset and tempo of puberty in human beings and implications for adolescent psychological development. Horm Behav. 2013;64(2):250–61.PubMedCrossRef
8.
Zurück zum Zitat Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev. 2003;24(5):668–93.PubMedCrossRef Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr Rev. 2003;24(5):668–93.PubMedCrossRef
9.
Zurück zum Zitat Hiatt RA, Stewart SL, Hoeft KS, Kushi LH, Windham GC, Biro FM, et al. Childhood socioeconomic position and pubertal onset in a cohort of multiethnic girls: implications for breast cancer. Cancer Epidemiol Biomarkers Prev. 2017;26(12):1714–21.PubMedPubMedCentralCrossRef Hiatt RA, Stewart SL, Hoeft KS, Kushi LH, Windham GC, Biro FM, et al. Childhood socioeconomic position and pubertal onset in a cohort of multiethnic girls: implications for breast cancer. Cancer Epidemiol Biomarkers Prev. 2017;26(12):1714–21.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Terry MB, Keegan THM, Houghton LC, Goldberg M, Andrulis IL, Daly MB, et al. Pubertal development in girls by breast cancer family history: the LEGACY girls cohort. Breast Cancer Res. 2017;19(1):69.PubMedPubMedCentralCrossRef Terry MB, Keegan THM, Houghton LC, Goldberg M, Andrulis IL, Daly MB, et al. Pubertal development in girls by breast cancer family history: the LEGACY girls cohort. Breast Cancer Res. 2017;19(1):69.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Sandler DP, Hodgson ME, Deming-Halverson SL, Juras PS, D’Aloisio AA, Suarez LM, et al. The Sister Study cohort: baseline methods and participant characteristics. Environ Health Perspect. 2017;125(12):127003.PubMedPubMedCentralCrossRef Sandler DP, Hodgson ME, Deming-Halverson SL, Juras PS, D’Aloisio AA, Suarez LM, et al. The Sister Study cohort: baseline methods and participant characteristics. Environ Health Perspect. 2017;125(12):127003.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Jiang Y, Weinberg CR, Sandler DP, Zhao S. Use of detailed family history data to improve risk prediction, with application to breast cancer screening. PLOS ONE. 2019;14(12):e0226407.PubMedPubMedCentralCrossRef Jiang Y, Weinberg CR, Sandler DP, Zhao S. Use of detailed family history data to improve risk prediction, with application to breast cancer screening. PLOS ONE. 2019;14(12):e0226407.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Niehoff NM, Nichols HB, Zhao S, White AJ, Sandler DP. Adult physical activity and breast cancer risk in women with a family history of breast cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(1):51–8.PubMedCrossRef Niehoff NM, Nichols HB, Zhao S, White AJ, Sandler DP. Adult physical activity and breast cancer risk in women with a family history of breast cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(1):51–8.PubMedCrossRef
14.
Zurück zum Zitat Rubin DB. Multiple imputation for nonresponse in surveys. New York: John Wiley & Sons; 1987.CrossRef Rubin DB. Multiple imputation for nonresponse in surveys. New York: John Wiley & Sons; 1987.CrossRef
15.
16.
Zurück zum Zitat Lawn RB, Lawlor DA, Fraser A. Associations between maternal prepregnancy body mass index and gestational weight gain and daughter’s age at menarche. Am J Epidemiol. 2018;187(4):677–86.PubMedCrossRef Lawn RB, Lawlor DA, Fraser A. Associations between maternal prepregnancy body mass index and gestational weight gain and daughter’s age at menarche. Am J Epidemiol. 2018;187(4):677–86.PubMedCrossRef
17.
Zurück zum Zitat Kubo A, Deardorff J, Laurent CA, Ferrara A, Greenspan LC, Quesenberry CP, et al. Associations between maternal obesity and pregnancy hyperglycemia and timing of pubertal onset in adolescent girls: a population-based study. Am J Epidemiol. 2018;187(7):1362–9.PubMedPubMedCentralCrossRef Kubo A, Deardorff J, Laurent CA, Ferrara A, Greenspan LC, Quesenberry CP, et al. Associations between maternal obesity and pregnancy hyperglycemia and timing of pubertal onset in adolescent girls: a population-based study. Am J Epidemiol. 2018;187(7):1362–9.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Lunddorf LLH, Brix N, Ernst A, Arendt LH, Støvring H, Clemmensen PJ, et al. Hypertensive disorders in pregnancy and timing of pubertal development in daughters and sons. Hum Reprod. 2020;35(9):2124–33.PubMedCrossRef Lunddorf LLH, Brix N, Ernst A, Arendt LH, Støvring H, Clemmensen PJ, et al. Hypertensive disorders in pregnancy and timing of pubertal development in daughters and sons. Hum Reprod. 2020;35(9):2124–33.PubMedCrossRef
19.
Zurück zum Zitat Schraw JM, Øgland B, Dong YQ, Nilsen ST, Forman MR, Ogland B, et al. In utero preeclampsia exposure, milk intake and pubertal development. Reprod Toxicol. 2015;54:19–25.PubMedCrossRef Schraw JM, Øgland B, Dong YQ, Nilsen ST, Forman MR, Ogland B, et al. In utero preeclampsia exposure, milk intake and pubertal development. Reprod Toxicol. 2015;54:19–25.PubMedCrossRef
20.
Zurück zum Zitat Kubo A, Ferrara A, Laurent CA, Windham GC, Greenspan LC, Deardorff J, et al. Associations between maternal pregravid obesity and gestational diabetes and the timing of pubarche in daughters. Am J Epidemiol. 2016;184(1):7–14.PubMedPubMedCentralCrossRef Kubo A, Ferrara A, Laurent CA, Windham GC, Greenspan LC, Deardorff J, et al. Associations between maternal pregravid obesity and gestational diabetes and the timing of pubarche in daughters. Am J Epidemiol. 2016;184(1):7–14.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Lauridsen LLB, Arendt LH, Ernst A, Brix N, Parner ET, Olsen J, et al. Maternal diabetes mellitus and timing of pubertal development in daughters and sons: a nationwide cohort study. Fertil Steril. 2018;110(1):35–44.PubMedCrossRef Lauridsen LLB, Arendt LH, Ernst A, Brix N, Parner ET, Olsen J, et al. Maternal diabetes mellitus and timing of pubertal development in daughters and sons: a nationwide cohort study. Fertil Steril. 2018;110(1):35–44.PubMedCrossRef
22.
Zurück zum Zitat Grunnet LG, Hansen S, Hjort L, Madsen CM, Kampmann FB, Thuesen ACB, et al. Adiposity, dysmetabolic traits, and earlier onset of female puberty in adolescent offspring of women with gestational diabetes mellitus: a clinical study within the Danish national birth cohort. Diabetes Care. 2017;40(12):1746–55.PubMedPubMedCentralCrossRef Grunnet LG, Hansen S, Hjort L, Madsen CM, Kampmann FB, Thuesen ACB, et al. Adiposity, dysmetabolic traits, and earlier onset of female puberty in adolescent offspring of women with gestational diabetes mellitus: a clinical study within the Danish national birth cohort. Diabetes Care. 2017;40(12):1746–55.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Buck Louis GM, Gray LE, Marcus M, Ojeda SR, Pescovitz OH, Witchel SF, et al. Environmental factors and puberty timing: expert panel research needs. Pediatrics. 2008;121(Suppl 3):192.CrossRef Buck Louis GM, Gray LE, Marcus M, Ojeda SR, Pescovitz OH, Witchel SF, et al. Environmental factors and puberty timing: expert panel research needs. Pediatrics. 2008;121(Suppl 3):192.CrossRef
24.
Zurück zum Zitat Soto AM, Rubin BS, Sonnenschein C. Endocrine disruption and the female. In: Gore AC, editor. Endocrine-disrupting chemicals: from basic research to clinical practice. 1st ed. Humana Press; 2007. p. 9–31.CrossRef Soto AM, Rubin BS, Sonnenschein C. Endocrine disruption and the female. In: Gore AC, editor. Endocrine-disrupting chemicals: from basic research to clinical practice. 1st ed. Humana Press; 2007. p. 9–31.CrossRef
25.
Zurück zum Zitat Franssen D, Ioannou YS, Alvarez-real A, Gerard A, Mueller JK, Heger S, et al. Pubertal timing after neonatal diethylstilbestrol exposure in female rats: neuroendocrine vs peripheral effects and additive role of prenatal food restriction. Reprod Toxicol. 2014;44:63–72.PubMedCrossRef Franssen D, Ioannou YS, Alvarez-real A, Gerard A, Mueller JK, Heger S, et al. Pubertal timing after neonatal diethylstilbestrol exposure in female rats: neuroendocrine vs peripheral effects and additive role of prenatal food restriction. Reprod Toxicol. 2014;44:63–72.PubMedCrossRef
26.
Zurück zum Zitat Meyer-Bahlburg HF, Ehrhardt AA, Rosen LR, Feldman JF, Veridiano NP, Zimmerman I, et al. Psychosexual milestones in women prenatally exposed to diethylstilbestrol. Horm Behav. 1984;18(3):359–66.PubMedCrossRef Meyer-Bahlburg HF, Ehrhardt AA, Rosen LR, Feldman JF, Veridiano NP, Zimmerman I, et al. Psychosexual milestones in women prenatally exposed to diethylstilbestrol. Horm Behav. 1984;18(3):359–66.PubMedCrossRef
27.
Zurück zum Zitat D’Aloisio AA, DeRoo LA, Baird DD, Weinberg CR, Sandler DP. Prenatal and infant exposures and age at menarche. Epidemiology. 2013;24(2):277–84.PubMedPubMedCentralCrossRef D’Aloisio AA, DeRoo LA, Baird DD, Weinberg CR, Sandler DP. Prenatal and infant exposures and age at menarche. Epidemiology. 2013;24(2):277–84.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Hatch EE, Troisi R, Wise LA, Titus-Ernstoff L, Hyer M, Palmer JR, et al. Preterm birth, fetal growth, and age at menarche among women exposed prenatally to diethylstilbestrol (DES). Reprod Toxicol. 2011;31(2):151–7.PubMedCrossRef Hatch EE, Troisi R, Wise LA, Titus-Ernstoff L, Hyer M, Palmer JR, et al. Preterm birth, fetal growth, and age at menarche among women exposed prenatally to diethylstilbestrol (DES). Reprod Toxicol. 2011;31(2):151–7.PubMedCrossRef
29.
Zurück zum Zitat Bibbo M, Gill WB, Azizi F, Blough R, Fang VS, Rosenfield RL, et al. Follow-up study of male and female offspring of DES-exposed mothers. Obs Gynecol. 1977;49(1):1–8. Bibbo M, Gill WB, Azizi F, Blough R, Fang VS, Rosenfield RL, et al. Follow-up study of male and female offspring of DES-exposed mothers. Obs Gynecol. 1977;49(1):1–8.
30.
Zurück zum Zitat Barnes AB. Menstrual history of young women exposed in utero to diethylstilbestrol. Fertil Steril. 1979;32(2):148–53.PubMedCrossRef Barnes AB. Menstrual history of young women exposed in utero to diethylstilbestrol. Fertil Steril. 1979;32(2):148–53.PubMedCrossRef
31.
Zurück zum Zitat Setchell KDR, Zimmer-Nechemias L, Cai J, Heubi JE. Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet. 1997;350(9070):23–7.PubMedCrossRef Setchell KDR, Zimmer-Nechemias L, Cai J, Heubi JE. Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet. 1997;350(9070):23–7.PubMedCrossRef
32.
Zurück zum Zitat Cao Y, Calafat AM, Doerge DR, Umbach DM, Bernbaum JC, Twaddle NC, et al. Isoflavones in urine, saliva, and blood of infants: data from a pilot study on the estrogenic activity of soy formula. J Expo Sci Environ Epidemiol. 2009;19(2):223–34.PubMedCrossRef Cao Y, Calafat AM, Doerge DR, Umbach DM, Bernbaum JC, Twaddle NC, et al. Isoflavones in urine, saliva, and blood of infants: data from a pilot study on the estrogenic activity of soy formula. J Expo Sci Environ Epidemiol. 2009;19(2):223–34.PubMedCrossRef
33.
34.
Zurück zum Zitat Jefferson WN, Padilla-Banks E, Newbold RR. Adverse effects on female development and reproduction in CD-1 mice following neonatal exposure to the phytoestrogen genistein at environmentally relevant doses. Biol Reprod. 2005;73(4):798–806.PubMedCrossRef Jefferson WN, Padilla-Banks E, Newbold RR. Adverse effects on female development and reproduction in CD-1 mice following neonatal exposure to the phytoestrogen genistein at environmentally relevant doses. Biol Reprod. 2005;73(4):798–806.PubMedCrossRef
35.
Zurück zum Zitat Andres A, Moore MB, Linam LE, Casey PH, Cleves MA, Badger TM. Compared with feeding infants breast milk or cow-milk formula, soy formula feeding does not affect subsequent reproductive organ size at 5 years of age. J Nutr. 2015;145(5):871–5.PubMedCrossRef Andres A, Moore MB, Linam LE, Casey PH, Cleves MA, Badger TM. Compared with feeding infants breast milk or cow-milk formula, soy formula feeding does not affect subsequent reproductive organ size at 5 years of age. J Nutr. 2015;145(5):871–5.PubMedCrossRef
36.
Zurück zum Zitat Sinai T, Ben-Avraham S, Guelmann-Mizrahi I, Goldberg MR, Naugolni L, Askapa G, et al. Consumption of soy-based infant formula is not associated with early onset of puberty. Eur J Nutr. 2019;58(2):681–7.PubMedCrossRef Sinai T, Ben-Avraham S, Guelmann-Mizrahi I, Goldberg MR, Naugolni L, Askapa G, et al. Consumption of soy-based infant formula is not associated with early onset of puberty. Eur J Nutr. 2019;58(2):681–7.PubMedCrossRef
37.
Zurück zum Zitat Strom BL, Schinnar R, Ziegler EE, Barnhart KT, Sammel MD, Macones GA, et al. Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. JAMA. 2001;286(7):807–14.PubMedCrossRef Strom BL, Schinnar R, Ziegler EE, Barnhart KT, Sammel MD, Macones GA, et al. Exposure to soy-based formula in infancy and endocrinological and reproductive outcomes in young adulthood. JAMA. 2001;286(7):807–14.PubMedCrossRef
38.
Zurück zum Zitat Kale A, Deardorff J, Lahiff M, Laurent C, Greenspan LC, Hiatt RA, et al. Breastfeeding versus formula-feeding and girls’ pubertal development. Matern Child Health J. 2014;19(3):519–27.CrossRef Kale A, Deardorff J, Lahiff M, Laurent C, Greenspan LC, Hiatt RA, et al. Breastfeeding versus formula-feeding and girls’ pubertal development. Matern Child Health J. 2014;19(3):519–27.CrossRef
39.
Zurück zum Zitat Aghaee S, Deardorff J, Greenspan LC, Quesenberry CP, Kushi LH, Kubo A. Breastfeeding and timing of pubertal onset in girls: a multiethnic population-based prospective cohort study. BMC Pediatr. 2019;19(1):277.PubMedPubMedCentralCrossRef Aghaee S, Deardorff J, Greenspan LC, Quesenberry CP, Kushi LH, Kubo A. Breastfeeding and timing of pubertal onset in girls: a multiethnic population-based prospective cohort study. BMC Pediatr. 2019;19(1):277.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Lee HA, Kim YJ, Lee H, Gwak HS, Hong YS, Kim HS, et al. The preventive effect of breast-feeding for longer than 6 months on early pubertal development among children aged 7–9 years in Korea. Public Health Nutr. 2015;18(18):3300–7.PubMedCrossRef Lee HA, Kim YJ, Lee H, Gwak HS, Hong YS, Kim HS, et al. The preventive effect of breast-feeding for longer than 6 months on early pubertal development among children aged 7–9 years in Korea. Public Health Nutr. 2015;18(18):3300–7.PubMedCrossRef
41.
Zurück zum Zitat Kwok MK, Leung GM, Lam TH, Schooling CM. Breastfeeding, childhood milk consumption, and onset of puberty. Pediatrics. 2012;130(3):e631–9.PubMedCrossRef Kwok MK, Leung GM, Lam TH, Schooling CM. Breastfeeding, childhood milk consumption, and onset of puberty. Pediatrics. 2012;130(3):e631–9.PubMedCrossRef
42.
Zurück zum Zitat Panagiotopoulou K, Katsouyanni K, Petridou E, Garas Y, Tzonou A, Trichopoulos D. Maternal age, parity, and pregnancy estrogens. Cancer Causes Control. 1990;1(2):119–24.PubMedCrossRef Panagiotopoulou K, Katsouyanni K, Petridou E, Garas Y, Tzonou A, Trichopoulos D. Maternal age, parity, and pregnancy estrogens. Cancer Causes Control. 1990;1(2):119–24.PubMedCrossRef
43.
Zurück zum Zitat Maccoby EE, Doering CH, Jacklin CN, Kraemer H. Concentrations of sex hormones in umbilical-cord blood: their relation to sex and birth order of infants. Child Dev. 1979;50(3):632–42.PubMedCrossRef Maccoby EE, Doering CH, Jacklin CN, Kraemer H. Concentrations of sex hormones in umbilical-cord blood: their relation to sex and birth order of infants. Child Dev. 1979;50(3):632–42.PubMedCrossRef
44.
Zurück zum Zitat Maisonet M, Christensen KY, Rubin C, Holmes A, Flanders WD, Heron J, et al. Role of prenatal characteristics and early growth on pubertal attainment of British girls. Pediatrics. 2010;126(3):e591-600.PubMedCrossRef Maisonet M, Christensen KY, Rubin C, Holmes A, Flanders WD, Heron J, et al. Role of prenatal characteristics and early growth on pubertal attainment of British girls. Pediatrics. 2010;126(3):e591-600.PubMedCrossRef
45.
Zurück zum Zitat Kwok MK, Leung GM, Schooling CM. Associations of birth order with early adolescent growth, pubertal onset, blood pressure and size: evidence from Hong Kong’s “Children of 1997” Birth Cohort. PLoS One. 2016;11(4):e0153787.PubMedPubMedCentralCrossRef Kwok MK, Leung GM, Schooling CM. Associations of birth order with early adolescent growth, pubertal onset, blood pressure and size: evidence from Hong Kong’s “Children of 1997” Birth Cohort. PLoS One. 2016;11(4):e0153787.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Centers for Disease Control and Prevention (US), National Center for Chronic Disease Prevention and Health Promotion (US), Office on Smoking and Health (US). Chapter 8. Reproductive and Developmental Effects. In: How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services; 2010. p. 521–644. Centers for Disease Control and Prevention (US), National Center for Chronic Disease Prevention and Health Promotion (US), Office on Smoking and Health (US). Chapter 8. Reproductive and Developmental Effects. In: How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General. Atlanta, GA: U.S. Department of Health and Human Services; 2010. p. 521–644.
47.
Zurück zum Zitat Cnattingius S. The epidemiology of smoking during pregnancy: Smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob Res. 2004;6(Suppl 2):125–40.CrossRef Cnattingius S. The epidemiology of smoking during pregnancy: Smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob Res. 2004;6(Suppl 2):125–40.CrossRef
48.
Zurück zum Zitat Lange S, Probst C, Rehm J, Popova S. National, regional, and global prevalence of smoking during pregnancy in the general population: a systematic review and meta-analysis. Lancet Glob Heal. 2018;6(7):e769–76.CrossRef Lange S, Probst C, Rehm J, Popova S. National, regional, and global prevalence of smoking during pregnancy in the general population: a systematic review and meta-analysis. Lancet Glob Heal. 2018;6(7):e769–76.CrossRef
49.
Zurück zum Zitat Brix N, Ernst A, Lauridsen LLB, Parner ET, Olsen J, Henriksen TB, et al. Maternal smoking during pregnancy and timing of puberty in sons and daughters: a population-based cohort study. Am J Epidemiol. 2019;188(1):47–56.PubMedCrossRef Brix N, Ernst A, Lauridsen LLB, Parner ET, Olsen J, Henriksen TB, et al. Maternal smoking during pregnancy and timing of puberty in sons and daughters: a population-based cohort study. Am J Epidemiol. 2019;188(1):47–56.PubMedCrossRef
50.
Zurück zum Zitat Windham GC, Lum R, Voss R, Wolff M, Pinney SM, Teteilbaum SL, et al. Age at pubertal onset in girls and tobacco smoke exposure during pre- and postnatal susceptibility windows. Epidemiology. 2017;28(5):719–27.PubMedPubMedCentralCrossRef Windham GC, Lum R, Voss R, Wolff M, Pinney SM, Teteilbaum SL, et al. Age at pubertal onset in girls and tobacco smoke exposure during pre- and postnatal susceptibility windows. Epidemiology. 2017;28(5):719–27.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Powls A, Botting N, Cooke RWI, Pilling D, Marlow N. Growth impairment in very low birthweight children at 12 years: correlation with perinatal and outcome variables. Arch Dis Child Fetal Neonatal Ed. 1996;75(3):152–7.CrossRef Powls A, Botting N, Cooke RWI, Pilling D, Marlow N. Growth impairment in very low birthweight children at 12 years: correlation with perinatal and outcome variables. Arch Dis Child Fetal Neonatal Ed. 1996;75(3):152–7.CrossRef
53.
Zurück zum Zitat Semiz S, Kurt F, Kurt DT, Zencir M, Sevinç Ö. Factors affecting onset of puberty in Denizli province in Turkey. Turk J Pediatr. 2009;51(1):49–55.PubMed Semiz S, Kurt F, Kurt DT, Zencir M, Sevinç Ö. Factors affecting onset of puberty in Denizli province in Turkey. Turk J Pediatr. 2009;51(1):49–55.PubMed
54.
Zurück zum Zitat Olivo-Marston S, Graubard BI, Visvanathan K, Forman MR. Gender-specific differences in birthweight and the odds of puberty: NHANES III, 1988–94. Paediatr Perinat Epidemiol. 2010;24(3):222–31.PubMedPubMedCentralCrossRef Olivo-Marston S, Graubard BI, Visvanathan K, Forman MR. Gender-specific differences in birthweight and the odds of puberty: NHANES III, 1988–94. Paediatr Perinat Epidemiol. 2010;24(3):222–31.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Papadimitriou A, Kanakis G, Douros K, Papadimitriou DT, Boutsiadis AH, Nicolaidou P, et al. Constitutional advancement of growth is associated with early puberty in girls. Horm Res Paediatr. 2011;76(4):273–7.PubMedCrossRef Papadimitriou A, Kanakis G, Douros K, Papadimitriou DT, Boutsiadis AH, Nicolaidou P, et al. Constitutional advancement of growth is associated with early puberty in girls. Horm Res Paediatr. 2011;76(4):273–7.PubMedCrossRef
56.
Zurück zum Zitat Hvidt JJ, Brix N, Ernst A, Braskhøj-Lauridsen LL, Ramlau-Hansen CH. Size at birth, infant growth, and age at pubertal development in boys and girls. Clin Epidemiol. 2019;11:873–83.PubMedPubMedCentralCrossRef Hvidt JJ, Brix N, Ernst A, Braskhøj-Lauridsen LL, Ramlau-Hansen CH. Size at birth, infant growth, and age at pubertal development in boys and girls. Clin Epidemiol. 2019;11:873–83.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Hui LL, Leung GM, Wong M-YY, Lam TH, Schooling CM. Small for gestational age and age at puberty: evidence from Hong Kong’s “Children of 1997” birth cohort. Am J Epidemiol. 2012;176(9):785–93.PubMedCrossRef Hui LL, Leung GM, Wong M-YY, Lam TH, Schooling CM. Small for gestational age and age at puberty: evidence from Hong Kong’s “Children of 1997” birth cohort. Am J Epidemiol. 2012;176(9):785–93.PubMedCrossRef
58.
Zurück zum Zitat Bhargava SKK, Ramji S, Srivastava U, Sachdev HPP, Kapani V, Datta V, et al. Growth and sexual maturation of low birth weight children: a 14 year follow up. Indian Pediatr. 1995;32(9):963–70.PubMed Bhargava SKK, Ramji S, Srivastava U, Sachdev HPP, Kapani V, Datta V, et al. Growth and sexual maturation of low birth weight children: a 14 year follow up. Indian Pediatr. 1995;32(9):963–70.PubMed
59.
Zurück zum Zitat Ghirri P, Bernardini M, Vuerich M, Cuttano AM, Coccoli L, Merusi I, et al. Adrenarche, pubertal development, age at menarche and final height of full-term, born small for gestational age (SGA) girls. Gynecol Endocrinol. 2001;15(2):91–7.PubMed Ghirri P, Bernardini M, Vuerich M, Cuttano AM, Coccoli L, Merusi I, et al. Adrenarche, pubertal development, age at menarche and final height of full-term, born small for gestational age (SGA) girls. Gynecol Endocrinol. 2001;15(2):91–7.PubMed
60.
61.
Zurück zum Zitat Terry MB, Wei Y, Esserman D, McKeague IW, Susser E. Pre- and postnatal determinants of childhood body size: cohort and sibling analyses. J Dev Orig Health Dis. 2011;2(02):99–111.PubMedCrossRef Terry MB, Wei Y, Esserman D, McKeague IW, Susser E. Pre- and postnatal determinants of childhood body size: cohort and sibling analyses. J Dev Orig Health Dis. 2011;2(02):99–111.PubMedCrossRef
62.
Zurück zum Zitat Weaver LT. Rapid growth in infancy: balancing the interests of the child. J Pediatr Gastroenterol Nutr. 2006;43(4):428–32.PubMedCrossRef Weaver LT. Rapid growth in infancy: balancing the interests of the child. J Pediatr Gastroenterol Nutr. 2006;43(4):428–32.PubMedCrossRef
63.
Zurück zum Zitat Atladottir H, Thorsdottir I. Energy intake and growth of infants in Iceland—a population with high frequency of breast-feeding and high birth weight. Eur J Clin Nutr. 2000;54(9):695–701.PubMedCrossRef Atladottir H, Thorsdottir I. Energy intake and growth of infants in Iceland—a population with high frequency of breast-feeding and high birth weight. Eur J Clin Nutr. 2000;54(9):695–701.PubMedCrossRef
64.
Zurück zum Zitat Biro FM, Pajak A, Wolff MS, Pinney SM, Windham GC, Galvez MP, et al. Age of menarche in a longitudinal US Cohort. J Pediatr Adolesc Gynecol. 2018;31(4):339–45.PubMedPubMedCentralCrossRef Biro FM, Pajak A, Wolff MS, Pinney SM, Windham GC, Galvez MP, et al. Age of menarche in a longitudinal US Cohort. J Pediatr Adolesc Gynecol. 2018;31(4):339–45.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Cooper R, Blell M, Hardy R, Black S, Pollard TM, Wadsworth MEJ, et al. Validity of age at menarche self-reported in adulthood. J Epidemiol Community Health. 2006;60(11):993–7.PubMedPubMedCentralCrossRef Cooper R, Blell M, Hardy R, Black S, Pollard TM, Wadsworth MEJ, et al. Validity of age at menarche self-reported in adulthood. J Epidemiol Community Health. 2006;60(11):993–7.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Must A, Phillips SM, Naumova EN, Blum M, Harris S, Dawson-Hughes B, et al. Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? Am J Epidemiol. 2002;155(7):672–9.PubMedCrossRef Must A, Phillips SM, Naumova EN, Blum M, Harris S, Dawson-Hughes B, et al. Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? Am J Epidemiol. 2002;155(7):672–9.PubMedCrossRef
67.
Zurück zum Zitat Fenton SE. Endocrine-disrupting compounds and mammary gland development: early exposure and later life consequences. Endocrinology. 2006;147(6 Suppl):S18-24.PubMedCrossRef Fenton SE. Endocrine-disrupting compounds and mammary gland development: early exposure and later life consequences. Endocrinology. 2006;147(6 Suppl):S18-24.PubMedCrossRef
68.
Zurück zum Zitat Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58 209 women with breast cancer and 101 986 women without the disease. Lancet. 2001;358(9291):1389–99.CrossRef Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58 209 women with breast cancer and 101 986 women without the disease. Lancet. 2001;358(9291):1389–99.CrossRef
Metadaten
Titel
Early-life exposures and age at thelarche in the Sister Study cohort
verfasst von
Mandy Goldberg
Aimee A. D’Aloisio
Katie M. O’Brien
Shanshan Zhao
Dale P. Sandler
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Breast Cancer Research / Ausgabe 1/2021
Elektronische ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-021-01490-z

Weitere Artikel der Ausgabe 1/2021

Breast Cancer Research 1/2021 Zur Ausgabe

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.