Skip to main content
Erschienen in: Endocrine 1/2024

16.01.2024 | Review

Gut microbiota and type 2 diabetes mellitus: a focus on the gut-brain axis

verfasst von: Yi Pan, Tong Bu, Xia Deng, Jue Jia, Guoyue Yuan

Erschienen in: Endocrine | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Type 2 diabetes mellitus (T2DM) has become one of the most serious public healthcare challenges, contributing to increased mortality and disability. In the past decades, significant progress has been made in understanding the pathogenesis of T2DM. Mounting evidence suggested that gut microbiota (GM) plays a significant role in the development of T2DM. Communication between the GM and the brain is a complex bidirectional connection, known as the “gut-brain axis,” via the nervous, neuroendocrine, and immune systems. Gut-brain axis has an essential impact on various physiological processes, including glucose metabolism, food intake, gut motility, etc. In this review, we provide an outline of the gut-brain axis. We also highlight how the dysbiosis of the gut-brain axis affects glucose homeostasis and even results in T2DM.
Literatur
1.
Zurück zum Zitat H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B.B. Duncan, C. Stein, A. Basit, J.C.N. Chan, J.C. Mbanya, M.E. Pavkov, A. Ramachandaran, S.H. Wild, S. James, W.H. Herman, P. Zhang, C. Bommer, S. Kuo, E.J. Boyko, D.J. Magliano, IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pr. 183, 109119 (2022). https://doi.org/10.1016/j.diabres.2021.109119CrossRef H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B.B. Duncan, C. Stein, A. Basit, J.C.N. Chan, J.C. Mbanya, M.E. Pavkov, A. Ramachandaran, S.H. Wild, S. James, W.H. Herman, P. Zhang, C. Bommer, S. Kuo, E.J. Boyko, D.J. Magliano, IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pr. 183, 109119 (2022). https://​doi.​org/​10.​1016/​j.​diabres.​2021.​109119CrossRef
9.
12.
Zurück zum Zitat J. Qin, R. Li, J. Raes, M. Arumugam, K.S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez, T. Yamada, D.R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H. Liang, H. Zheng, Y. Xie, J. Tap, P. Lepage, M. Bertalan, J.M. Batto, T. Hansen, D. Le Paslier, A. Linneberg, H.B. Nielsen, E. Pelletier, P. Renault, T. Sicheritz-Ponten, K. Turner, H. Zhu, C. Yu, S. Li, M. Jian, Y. Zhou, Y. Li, X. Zhang, S. Li, N. Qin, H. Yang, J. Wang, S. Brunak, J. Doré, F. Guarner, K. Kristiansen, O. Pedersen, J. Parkhill, J. Weissenbach, P. Bork, S.D. Ehrlich, J. Wang, A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285), 59–65 (2010). https://doi.org/10.1038/nature08821CrossRefPubMedPubMedCentral J. Qin, R. Li, J. Raes, M. Arumugam, K.S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez, T. Yamada, D.R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H. Liang, H. Zheng, Y. Xie, J. Tap, P. Lepage, M. Bertalan, J.M. Batto, T. Hansen, D. Le Paslier, A. Linneberg, H.B. Nielsen, E. Pelletier, P. Renault, T. Sicheritz-Ponten, K. Turner, H. Zhu, C. Yu, S. Li, M. Jian, Y. Zhou, Y. Li, X. Zhang, S. Li, N. Qin, H. Yang, J. Wang, S. Brunak, J. Doré, F. Guarner, K. Kristiansen, O. Pedersen, J. Parkhill, J. Weissenbach, P. Bork, S.D. Ehrlich, J. Wang, A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285), 59–65 (2010). https://​doi.​org/​10.​1038/​nature08821CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat A. Varesi, L.I.M. Campagnoli, F. Fahmideh, E. Pierella, M. Romeo, G. Ricevuti, M. Nicoletta, S. Chirumbolo, and A. Pascale, The interplay between gut microbiota and Parkinson’s disease: implications on diagnosis and treatment. Int. J. Mol. Sci. 23(20), (2022). https://doi.org/10.3390/ijms232012289 A. Varesi, L.I.M. Campagnoli, F. Fahmideh, E. Pierella, M. Romeo, G. Ricevuti, M. Nicoletta, S. Chirumbolo, and A. Pascale, The interplay between gut microbiota and Parkinson’s disease: implications on diagnosis and treatment. Int. J. Mol. Sci. 23(20), (2022). https://​doi.​org/​10.​3390/​ijms232012289
27.
Zurück zum Zitat J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, S. Liang, W. Zhang, Y. Guan, D. Shen, Y. Peng, D. Zhang, Z. Jie, W. Wu, Y. Qin, W. Xue, J. Li, L. Han, D. Lu, P. Wu, Y. Dai, X. Sun, Z. Li, A. Tang, S. Zhong, X. Li, W. Chen, R. Xu, M. Wang, Q. Feng, M. Gong, J. Yu, Y. Zhang, M. Zhang, T. Hansen, G. Sanchez, J. Raes, G. Falony, S. Okuda, M. Almeida, E. LeChatelier, P. Renault, N. Pons, J.M. Batto, Z. Zhang, H. Chen, R. Yang, W. Zheng, S. Li, H. Yang, J. Wang, S.D. Ehrlich, R. Nielsen, O. Pedersen, K. Kristiansen, J. Wang, A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418), 55–60 (2012). https://doi.org/10.1038/nature11450CrossRefPubMed J. Qin, Y. Li, Z. Cai, S. Li, J. Zhu, F. Zhang, S. Liang, W. Zhang, Y. Guan, D. Shen, Y. Peng, D. Zhang, Z. Jie, W. Wu, Y. Qin, W. Xue, J. Li, L. Han, D. Lu, P. Wu, Y. Dai, X. Sun, Z. Li, A. Tang, S. Zhong, X. Li, W. Chen, R. Xu, M. Wang, Q. Feng, M. Gong, J. Yu, Y. Zhang, M. Zhang, T. Hansen, G. Sanchez, J. Raes, G. Falony, S. Okuda, M. Almeida, E. LeChatelier, P. Renault, N. Pons, J.M. Batto, Z. Zhang, H. Chen, R. Yang, W. Zheng, S. Li, H. Yang, J. Wang, S.D. Ehrlich, R. Nielsen, O. Pedersen, K. Kristiansen, J. Wang, A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418), 55–60 (2012). https://​doi.​org/​10.​1038/​nature11450CrossRefPubMed
31.
Zurück zum Zitat K.H. Allin, V. Tremaroli, R. Caesar, B.A.H. Jensen, M.T.F. Damgaard, M.I. Bahl, T.R. Licht, T.H. Hansen, T. Nielsen, T.M. Dantoft, A. Linneberg, T. Jørgensen, H. Vestergaard, K. Kristiansen, P.W. Franks, T. Hansen, F. Bäckhed, O. Pedersen, Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61(4), 810–820 (2018). https://doi.org/10.1007/s00125-018-4550-1CrossRefPubMedPubMedCentral K.H. Allin, V. Tremaroli, R. Caesar, B.A.H. Jensen, M.T.F. Damgaard, M.I. Bahl, T.R. Licht, T.H. Hansen, T. Nielsen, T.M. Dantoft, A. Linneberg, T. Jørgensen, H. Vestergaard, K. Kristiansen, P.W. Franks, T. Hansen, F. Bäckhed, O. Pedersen, Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61(4), 810–820 (2018). https://​doi.​org/​10.​1007/​s00125-018-4550-1CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat J. Xu, R. Liang, W. Zhang, K. Tian, J. Li, X. Chen, T. Yu, Q. Chen, Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J. Diabetes 12(3), 224–236 (2020). https://doi.org/10.1111/1753-0407.12986CrossRefPubMed J. Xu, R. Liang, W. Zhang, K. Tian, J. Li, X. Chen, T. Yu, Q. Chen, Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J. Diabetes 12(3), 224–236 (2020). https://​doi.​org/​10.​1111/​1753-0407.​12986CrossRefPubMed
34.
Zurück zum Zitat S. Singh, R.K. Sharma, S. Malhotra, R. Pothuraju, U.K. Shandilya, Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats. Benef. Microbes 8(2), 243–255 (2017). https://doi.org/10.3920/bm2016.0090CrossRefPubMed S. Singh, R.K. Sharma, S. Malhotra, R. Pothuraju, U.K. Shandilya, Lactobacillus rhamnosus NCDC17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats. Benef. Microbes 8(2), 243–255 (2017). https://​doi.​org/​10.​3920/​bm2016.​0090CrossRefPubMed
43.
Zurück zum Zitat J.F. Cryan, K.J. O’Riordan, C.S.M. Cowan, K.V. Sandhu, T.F.S. Bastiaanssen, M. Boehme, M.G. Codagnone, S. Cussotto, C. Fulling, A.V. Golubeva, K.E. Guzzetta, M. Jaggar, C.M. Long-Smith, J.M. Lyte, J.A. Martin, A. Molinero-Perez, G. Moloney, E. Morelli, E. Morillas, R. O’Connor, J.S. Cruz-Pereira, V.L. Peterson, K. Rea, N.L. Ritz, E. Sherwin, S. Spichak, E.M. Teichman, M. van de Wouw, A.P. Ventura-Silva, S.E. Wallace-Fitzsimons, N. Hyland, G. Clarke, T.G. Dinan, The microbiota-gut-brain axis. Physiol. Rev. 99(4), 1877–2013 (2019). https://doi.org/10.1152/physrev.00018.2018CrossRefPubMed J.F. Cryan, K.J. O’Riordan, C.S.M. Cowan, K.V. Sandhu, T.F.S. Bastiaanssen, M. Boehme, M.G. Codagnone, S. Cussotto, C. Fulling, A.V. Golubeva, K.E. Guzzetta, M. Jaggar, C.M. Long-Smith, J.M. Lyte, J.A. Martin, A. Molinero-Perez, G. Moloney, E. Morelli, E. Morillas, R. O’Connor, J.S. Cruz-Pereira, V.L. Peterson, K. Rea, N.L. Ritz, E. Sherwin, S. Spichak, E.M. Teichman, M. van de Wouw, A.P. Ventura-Silva, S.E. Wallace-Fitzsimons, N. Hyland, G. Clarke, T.G. Dinan, The microbiota-gut-brain axis. Physiol. Rev. 99(4), 1877–2013 (2019). https://​doi.​org/​10.​1152/​physrev.​00018.​2018CrossRefPubMed
50.
Zurück zum Zitat H. Iwasaki, M. Kajimura, S. Osawa, S. Kanaoka, T. Furuta, M. Ikuma, A. Hishida, A deficiency of gastric interstitial cells of Cajal accompanied by decreased expression of neuronal nitric oxide synthase and substance P in patients with type 2 diabetes mellitus. J. Gastroenterol. 41(11), 1076–1087 (2006). https://doi.org/10.1007/s00535-006-1909-8CrossRefPubMed H. Iwasaki, M. Kajimura, S. Osawa, S. Kanaoka, T. Furuta, M. Ikuma, A. Hishida, A deficiency of gastric interstitial cells of Cajal accompanied by decreased expression of neuronal nitric oxide synthase and substance P in patients with type 2 diabetes mellitus. J. Gastroenterol. 41(11), 1076–1087 (2006). https://​doi.​org/​10.​1007/​s00535-006-1909-8CrossRefPubMed
52.
76.
Zurück zum Zitat G. Frost, M.L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, D. Carling, J.R. Swann, G. Gibson, A. Viardot, D. Morrison, E. Louise Thomas, J.D. Bell, The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014). https://doi.org/10.1038/ncomms4611CrossRefPubMed G. Frost, M.L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, D. Carling, J.R. Swann, G. Gibson, A. Viardot, D. Morrison, E. Louise Thomas, J.D. Bell, The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014). https://​doi.​org/​10.​1038/​ncomms4611CrossRefPubMed
77.
Zurück zum Zitat A. Psichas, M.L. Sleeth, K.G. Murphy, L. Brooks, G.A. Bewick, A.C. Hanyaloglu, M.A. Ghatei, S.R. Bloom, G. Frost, The short-chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J. Obes. 39(3), 424–429 (2015). https://doi.org/10.1038/ijo.2014.153CrossRef A. Psichas, M.L. Sleeth, K.G. Murphy, L. Brooks, G.A. Bewick, A.C. Hanyaloglu, M.A. Ghatei, S.R. Bloom, G. Frost, The short-chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J. Obes. 39(3), 424–429 (2015). https://​doi.​org/​10.​1038/​ijo.​2014.​153CrossRef
80.
Zurück zum Zitat S.S. Pedersen, M. Prause, C. Sørensen, J. Størling, T. Moritz, E. Mariño, and N. Billestrup, Targeted delivery of butyrate improves glucose homeostasis, reduces hepatic lipid accumulation and inflammation in db/db mice. Int. J. Mol. Sci. 24(5), (2023). https://doi.org/10.3390/ijms24054533 S.S. Pedersen, M. Prause, C. Sørensen, J. Størling, T. Moritz, E. Mariño, and N. Billestrup, Targeted delivery of butyrate improves glucose homeostasis, reduces hepatic lipid accumulation and inflammation in db/db mice. Int. J. Mol. Sci. 24(5), (2023). https://​doi.​org/​10.​3390/​ijms24054533
84.
Zurück zum Zitat M.S. Trabelsi, M. Daoudi, J. Prawitt, S. Ducastel, V. Touche, S.I. Sayin, A. Perino, C.A. Brighton, Y. Sebti, J. Kluza, O. Briand, H. Dehondt, E. Vallez, E. Dorchies, G. Baud, V. Spinelli, N. Hennuyer, S. Caron, K. Bantubungi, R. Caiazzo, F. Reimann, P. Marchetti, P. Lefebvre, F. Bäckhed, F.M. Gribble, K. Schoonjans, F. Pattou, A. Tailleux, B. Staels, S. Lestavel, Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629 (2015). https://doi.org/10.1038/ncomms8629CrossRefPubMed M.S. Trabelsi, M. Daoudi, J. Prawitt, S. Ducastel, V. Touche, S.I. Sayin, A. Perino, C.A. Brighton, Y. Sebti, J. Kluza, O. Briand, H. Dehondt, E. Vallez, E. Dorchies, G. Baud, V. Spinelli, N. Hennuyer, S. Caron, K. Bantubungi, R. Caiazzo, F. Reimann, P. Marchetti, P. Lefebvre, F. Bäckhed, F.M. Gribble, K. Schoonjans, F. Pattou, A. Tailleux, B. Staels, S. Lestavel, Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6, 7629 (2015). https://​doi.​org/​10.​1038/​ncomms8629CrossRefPubMed
86.
Zurück zum Zitat M. Watanabe, S.M. Houten, C. Mataki, M.A. Christoffolete, B.W. Kim, H. Sato, N. Messaddeq, J.W. Harney, O. Ezaki, T. Kodama, K. Schoonjans, A.C. Bianco, J. Auwerx, Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075), 484–489 (2006). https://doi.org/10.1038/nature04330CrossRefPubMed M. Watanabe, S.M. Houten, C. Mataki, M.A. Christoffolete, B.W. Kim, H. Sato, N. Messaddeq, J.W. Harney, O. Ezaki, T. Kodama, K. Schoonjans, A.C. Bianco, J. Auwerx, Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075), 484–489 (2006). https://​doi.​org/​10.​1038/​nature04330CrossRefPubMed
92.
Zurück zum Zitat P. Pathak, C. Xie, R.G. Nichols, J.M. Ferrell, S. Boehme, K.W. Krausz, A.D. Patterson, F.J. Gonzalez, J.Y.L. Chiang, Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism.Hepatology 68(4), 1574–1588 (2018). https://doi.org/10.1002/hep.29857CrossRefPubMed P. Pathak, C. Xie, R.G. Nichols, J.M. Ferrell, S. Boehme, K.W. Krausz, A.D. Patterson, F.J. Gonzalez, J.Y.L. Chiang, Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism.Hepatology 68(4), 1574–1588 (2018). https://​doi.​org/​10.​1002/​hep.​29857CrossRefPubMed
110.
Zurück zum Zitat T.D. Müller, B. Finan, S.R. Bloom, D. D’Alessio, D.J. Drucker, P.R. Flatt, A. Fritsche, F. Gribble, H.J. Grill, J.F. Habener, J.J. Holst, W. Langhans, J.J. Meier, M.A. Nauck, D. Perez-Tilve, A. Pocai, F. Reimann, D.A. Sandoval, T.W. Schwartz, R.J. Seeley, K. Stemmer, M. Tang-Christensen, S.C. Woods, R.D. DiMarchi, M.H. Tschöp, Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019). https://doi.org/10.1016/j.molmet.2019.09.010CrossRefPubMedPubMedCentral T.D. Müller, B. Finan, S.R. Bloom, D. D’Alessio, D.J. Drucker, P.R. Flatt, A. Fritsche, F. Gribble, H.J. Grill, J.F. Habener, J.J. Holst, W. Langhans, J.J. Meier, M.A. Nauck, D. Perez-Tilve, A. Pocai, F. Reimann, D.A. Sandoval, T.W. Schwartz, R.J. Seeley, K. Stemmer, M. Tang-Christensen, S.C. Woods, R.D. DiMarchi, M.H. Tschöp, Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 (2019). https://​doi.​org/​10.​1016/​j.​molmet.​2019.​09.​010CrossRefPubMedPubMedCentral
112.
Zurück zum Zitat C. Knauf, P.D. Cani, C. Perrin, M.A. Iglesias, J.F. Maury, E. Bernard, F. Benhamed, T. Grémeaux, D.J. Drucker, C.R. Kahn, J. Girard, J.F. Tanti, N.M. Delzenne, C. Postic, R. Burcelin, Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J. Clin. Invest. 115(12), 3554–3563 (2005). https://doi.org/10.1172/jci25764CrossRefPubMedPubMedCentral C. Knauf, P.D. Cani, C. Perrin, M.A. Iglesias, J.F. Maury, E. Bernard, F. Benhamed, T. Grémeaux, D.J. Drucker, C.R. Kahn, J. Girard, J.F. Tanti, N.M. Delzenne, C. Postic, R. Burcelin, Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J. Clin. Invest. 115(12), 3554–3563 (2005). https://​doi.​org/​10.​1172/​jci25764CrossRefPubMedPubMedCentral
121.
Zurück zum Zitat K. Miyawaki, Y. Yamada, N. Ban, Y. Ihara, K. Tsukiyama, H. Zhou, S. Fujimoto, A. Oku, K. Tsuda, S. Toyokuni, H. Hiai, W. Mizunoya, T. Fushiki, J.J. Holst, M. Makino, A. Tashita, Y. Kobara, Y. Tsubamoto, T. Jinnouchi, T. Jomori, Y. Seino, Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 8(7), 738–742 (2002). https://doi.org/10.1038/nm727CrossRefPubMed K. Miyawaki, Y. Yamada, N. Ban, Y. Ihara, K. Tsukiyama, H. Zhou, S. Fujimoto, A. Oku, K. Tsuda, S. Toyokuni, H. Hiai, W. Mizunoya, T. Fushiki, J.J. Holst, M. Makino, A. Tashita, Y. Kobara, Y. Tsubamoto, T. Jinnouchi, T. Jomori, Y. Seino, Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 8(7), 738–742 (2002). https://​doi.​org/​10.​1038/​nm727CrossRefPubMed
123.
142.
Zurück zum Zitat P.D. Cani, J. Amar, M.A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A.M. Neyrinck, F. Fava, K.M. Tuohy, C. Chabo, A. Waget, E. Delmée, B. Cousin, T. Sulpice, B. Chamontin, J. Ferrières, J.F. Tanti, G.R. Gibson, L. Casteilla, N.M. Delzenne, M.C. Alessi, R. Burcelin, Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7), 1761–1772 (2007). https://doi.org/10.2337/db06-1491CrossRefPubMed P.D. Cani, J. Amar, M.A. Iglesias, M. Poggi, C. Knauf, D. Bastelica, A.M. Neyrinck, F. Fava, K.M. Tuohy, C. Chabo, A. Waget, E. Delmée, B. Cousin, T. Sulpice, B. Chamontin, J. Ferrières, J.F. Tanti, G.R. Gibson, L. Casteilla, N.M. Delzenne, M.C. Alessi, R. Burcelin, Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7), 1761–1772 (2007). https://​doi.​org/​10.​2337/​db06-1491CrossRefPubMed
148.
Zurück zum Zitat D. Erny, A.L. Hrabě de Angelis, D. Jaitin, P. Wieghofer, O. Staszewski, E. David, H. Keren-Shaul, T. Mahlakoiv, K. Jakobshagen, T. Buch, V. Schwierzeck, O. Utermöhlen, E. Chun, W.S. Garrett, K.D. McCoy, A. Diefenbach, P. Staeheli, B. Stecher, I. Amit, M. Prinz, Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18(7), 965–977 (2015). https://doi.org/10.1038/nn.4030CrossRefPubMedPubMedCentral D. Erny, A.L. Hrabě de Angelis, D. Jaitin, P. Wieghofer, O. Staszewski, E. David, H. Keren-Shaul, T. Mahlakoiv, K. Jakobshagen, T. Buch, V. Schwierzeck, O. Utermöhlen, E. Chun, W.S. Garrett, K.D. McCoy, A. Diefenbach, P. Staeheli, B. Stecher, I. Amit, M. Prinz, Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18(7), 965–977 (2015). https://​doi.​org/​10.​1038/​nn.​4030CrossRefPubMedPubMedCentral
152.
Zurück zum Zitat M. Kalyan, A.H. Tousif, S. Sonali, C. Vichitra, T. Sunanda, S.S. Praveenraj, B. Ray, V.R. Gorantla, W. Rungratanawanich, A.M. Mahalakshmi, M.W. Qoronfleh, T.M. Monaghan, B.J. Song, M.M. Essa, and S.B. Chidambaram, Role of endogenous lipopolysaccharides in neurological disorders. Cells 11(24), (2022). https://doi.org/10.3390/cells11244038 M. Kalyan, A.H. Tousif, S. Sonali, C. Vichitra, T. Sunanda, S.S. Praveenraj, B. Ray, V.R. Gorantla, W. Rungratanawanich, A.M. Mahalakshmi, M.W. Qoronfleh, T.M. Monaghan, B.J. Song, M.M. Essa, and S.B. Chidambaram, Role of endogenous lipopolysaccharides in neurological disorders. Cells 11(24), (2022). https://​doi.​org/​10.​3390/​cells11244038
156.
Zurück zum Zitat Y. Date, M. Kojima, H. Hosoda, A. Sawaguchi, M.S. Mondal, T. Suganuma, S. Matsukura, K. Kangawa, M. Nakazato, Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141(11), 4255–4261 (2000). https://doi.org/10.1210/endo.141.11.7757CrossRefPubMed Y. Date, M. Kojima, H. Hosoda, A. Sawaguchi, M.S. Mondal, T. Suganuma, S. Matsukura, K. Kangawa, M. Nakazato, Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141(11), 4255–4261 (2000). https://​doi.​org/​10.​1210/​endo.​141.​11.​7757CrossRefPubMed
Metadaten
Titel
Gut microbiota and type 2 diabetes mellitus: a focus on the gut-brain axis
verfasst von
Yi Pan
Tong Bu
Xia Deng
Jue Jia
Guoyue Yuan
Publikationsdatum
16.01.2024
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 1/2024
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-023-03640-z

Weitere Artikel der Ausgabe 1/2024

Endocrine 1/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.