Skip to main content
Erschienen in: Herzschrittmachertherapie + Elektrophysiologie 3/2022

Open Access 16.07.2022 | Schwerpunkt

Imaging for risk stratification of sudden cardiac death

verfasst von: Pieter van der Bijl, MD PhD, Jeroen J. Bax, MD PhD

Erschienen in: Herzschrittmachertherapie + Elektrophysiologie | Ausgabe 3/2022

Abstract

Sudden cardiac death (SCD) can be effectively prevented with the use of implantable cardioverter-defibrillator (ICD). Current guidelines advocate an ICD for primary prevention in the presence of an left ventricular ejection fraction (LVEF) ≤ 35%. The majority of individuals that experience SCD, however, have an LVEF > 35%. Multimodality cardiac imaging has the ability to visualize the three factors responsible for arrhythmia-mediated SCD, namely substrate, trigger and modulator. Advances in cardiac imaging techniques have allowed improved SCD risk stratification, especially in the group of patients with an LVEF > 35%. However, clinical integration of cardiac imaging for SCD risk stratification will require more comparative data between modalities and parameters, as well as evidence of an impact on outcomes. The current review represents an update on the use of multimodality imaging techniques for SCD risk stratification.
Hinweise
Scan QR code & read article online

Introduction

Sudden cardiac death (SCD) is defined as an unexpected, terminal event occurring within 1 h of symptom onset when death was witnessed, or within 24 h of the deceased having been observed alive when death was an unwitnessed event. In most instances, SCD occurs as a result of significant, underlying structural heart disease, e.g. ischemic or non-ischemic cardiomyopathy or severe valvular heart disease. Electrophysiological abnormalities without macroscopic structural heart disease can also lead to SCD, but are far less common. The most frequent aetiology is ischemic heart disease, which accounts for 50–80% of SCD events [1]. SCD can be most effectively prevented with an implantable cardioverter-defibrillator (ICD), delivering antitachycardia pacing or defibrillation to terminate ventricular tachycardia or ventricular fibrillation. Deciding on ICD implantation for secondary prevention is usually straightforward—SCD which was interrupted by cardiopulmonary resuscitation or lethal arrhythmias which terminated spontaneously comprise indications for implantation of an ICD [2]. Establishing criteria for primary prevention ICD implantation, however, is more complex. Contemporary guidelines are based on an impaired left ventricular ejection fraction (LVEF) < 35%, measured on two-dimensional, transthoracic echocardiography [2]. Using LVEF in isolation, however, is neither sensitive nor specific, with up to 80% of individuals who experience SCD having a documented LVEF > 35% [3, 4]. The modest performance of LVEF alone in guiding SCD prediction may be attributed to various factors, including the presence of rhythms not amenable to ICD therapy (e.g. asystole or pulseless electrical activity) and the reduction of a complex pathophysiological process to LV systolic function. There is a clear need for improved risk stratification strategies to guide primary prevention ICD implantation, and while a variety of electrophysiological biomarkers have been described, the current review will focus on advances in the use of multimodality imaging to enhance SCD risk stratification.

Visualization of SCD risk factors

Life-threatening arrhythmias originate when a trigger (e.g. myocardial ischemia) is imposed on an arrhythmogenic substrate (e.g. ventricular scar tissue). The process can be further influenced by so-called modulating factors, e.g. autonomic nervous system dysfunction. This triad, comprising the factors responsible for arrhythmic SCD, is referred to as “Coumel’s triangle of arrhythmogenesis”, in honour of the eminent French electrophysiologist Philippe Coumel (Fig. 1). While the pathophysiology of post-infarct ventricular tachycardia is well understood (i.e. re-entry around scar tissue), the electrophysiological substrate in non-ischemic ventricular tachycardia is less well described [5]. Since scar tissue itself is electrically inert, ventricular tachycardias arise from the border zone (also called the “grey zone”), which is the transitional area between scar and normal myocardium (Fig. 2). This border zone represents an area of tissue heterogeneity, where non-uniform electrical conduction takes place and which is important for generating and sustaining ventricular tachycardias. Replacement scar can be imaged directly by late gadolinium enhancement (LGE) (Fig. 2) and indirectly with deformation imaging (reflecting the stiffness of scar), e.g. speckle tracking strain echocardiography or feature tracking cardiac magnetic resonance (CMR). Diffuse scar is reflected in elevated T1 values on parametric CMR mapping, although values can be influenced by aetiologies other than fibrosis, e.g. oedema and amyloid deposition. Progress in non-invasive techniques has allowed a shift from imaging scar tissue to the visualization of tissue heterogeneity, which can be quantified by measuring the size of the grey zone on LGE CMR, the mean absolute deviation of segmental pixel standard deviations on T1 mapping, mechanical dispersion (MD) on speckle tracking strain echocardiography (Fig. 2) or feature tracking CMR [5]. MD is defined as the standard deviation of the time of the onset of the QRS complex on the electrocardiogram (ECG) to peak myocardial deformation in 16 left ventricular segments, and reflects non-uniform electromechanical function due to underlying tissue heterogeneity, e.g. the presence of scar. It can also be influenced by electrical causes of dyssynchrony, e.g. a prolonged QT time (Fig. 2). While research has mostly focused on demonstrating the substrate of Coumel’s triangle, triggers can also be imaged, e.g. myocardial ischemia on stress perfusion CMR, pharmacologic stress echocardiography or nuclear perfusion single photon emission computed tomography (SPECT) or positron emission tomography (PET). Modulators (e.g. autonomic imbalance) can be visualized by nuclear innervation imaging, using radiolabelled analogues of noradrenaline (e.g. iodine-123 meta-iodobenzylguanidine [123I‑mIBG]), which compete with endogenous noradrenaline (the latter released by sympathetic nerves) for neuronal reuptake. Increased sympathetic tone causes a higher washout of the labelled noradrenaline analogues, which can be quantified with SPECT or PET. A summary of imaging modalities and techniques, stratified by the three components of Coumel’s triangle, is provided in Table 1.
Table 1
Summary of different imaging modalities and techniques used to image the components of Coumel’s triangle
Substrate
Imaging modality
Technique
Replacement scar
CMR
LGE
Grey zone
Diffuse scar
T1 mapping
ECV
Replacement and diffuse scar
Strain
MD
Echocardiography
Strain
MD
Trigger
Imaging modality
Technique
Perfusion
Nuclear imaging
99mTc SPECT
Inflammation
18F‑FDG PET
82Rb PET
Modulating factor
Imaging modality
Technique
Denervation
Nuclear imaging
123I‑mIBG SPECT
11C‑HED PET
11C‑HED PET 11C‑hydroxyephedrine positron emission tomography, CMR cardiac magnetic resonance, ECV extracellular volume, 18F‑FDG PET 18F‑labelled fluorodeoxyglucose positron emission tomography, 123I‑mIBG SPECT iodine-123 meta-iodobenzylguanidine single photon emission computed tomography, LGE late gadolinium enhancement, MD mechanical dispersion, 82Rb PET rubidium-82 positron emission tomography, 99mTc SPECT technetium 99m sestamibi single photon emission computed tomography

Ischemic cardiomyopathy

Patients with ischemic cardiomyopathy and an impaired LVEF demonstrated a survival benefit after ICD implantation in the Multicenter Automatic Defibrillator Trial (MADIT II) and the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) [3, 4]. The majority of individuals who suffer from SCD, however, have an LVEF > 35%. Impaired LV global longitudinal strain (GLS) and increased LVMD (Fig. 2) on speckle tracking strain echocardiography have been independently associated with ventricular arrhythmias and SCD in patients with previous myocardial infarction, including those with an LVEF > 35% [6]. Visualization of LGE on CMR also represents a potential solution to the risk stratification of individuals with an LVEF > 35%, since both the presence and extent of LGE have been independently linked to SCD and ventricular arrhythmias in persons with ischemic cardiomyopathy, regardless of LVEF (Fig. 2; [7, 8]). Quantification of the grey zone on CMR, in addition to being independent of LVEF for predicting SCD, has been shown to be superior to the LGE burden (Fig. 2; [9, 10]). As an alternative to echocardiographic LVMD, SPECT has the ability to appraise LV dyssynchrony. In a study of 183 patients with severely impaired LVEF, those with greater SPECT-derived dyssynchrony experienced a higher frequency of ventricular arrhythmias [11]. Since no multivariable analysis was performed, no firm conclusion can be drawn regarding the additive value of dyssynchrony measured on SPECT for SCD risk estimation [11]. In a study of > 4500 patients with an LVEF > 35%, the extent of myocardial perfusion defects on SPECT was associated with SCD, demonstrating the potential value of imaging SCD triggers, in addition to the substrate [12]. Imaging the third limb of Coumel’s triangle, i.e. modulating factors of SCD, is currently the preserve of nuclear medicine. The AdreView Myocardial Imaging for Risk Evaluation in Heart Failure (ADMIRE-HF) trial investigated the role of 123I‑mIBG in predicting outcome in 961 patients with ischemic and non-ischemic cardiomyopathy and an LVEF < 35% [13]. The occurrence of SCD was associated with myocardial sympathetic dysfunction as part of a combined endpoint [13]. Similarly, in the Prediction of Arrhythmic Events with Positron Emission Tomography (PAREPET) trial, a greater burden of sympathetic denervation (visualized with 11C‑hydroxyephedrine PET) was associated with SCD in primary prevention ICD candidates with ischemic cardiomyopathy [14]. The Cardiovascular Magnetic Resonance Guided Management of Mild-Moderate Left Ventricular Systolic Dysfunction (CMR-GUIDE; NCT01918215) trial is a prospective, randomized study which is currently enrolling participants with an LVEF of 36–50%, i.e. persons who would not receive an ICD according to current guidelines [15]. In the Prediction of Arrhythmic Events With Positron Emission Tomography (PAREPET) II (NCT03493516) trial, the utility of 18F‑LMI1195 (a fluorinated noradrenaline analogue with a longer t1/2 than 11C‑labelled compounds, having the advantage of allowing delivery from a remote cyclotron) will be evaluated for the prediction of SCD in ischemic cardiomyopathy.

Non-ischemic cardiomyopathy

Data on the utility of LVEF as a criterion for ICD implantation in non-ischemic cardiomyopathy are less consistent than for ischemic cardiomyopathy. While patients with an LVEF < 35% experienced a reduction in SCD in the Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation (DEFINITE) and SCD-HeFT trials, those with a similarly impaired LVEF did not show any improvement in survival in the Danish Study to Assess the Efficacy of ICDs in Patients with Non-Ischemic Systolic Heart Failure on Mortality (DANISH) [1618]. Similar to ischemic cardiomyopathy, echocardiographic LVMD has been associated with SCD in patients with non-ischemic cardiomyopathy, independent of LVEF [19]. While the presence of LGE on CMR is also associated with SCD (independent of LVEF) and ventricular arrhythmias in persons with non-ischemic cardiomyopathy, there is little consensus on the extent and location required to accurately predict SCD [4, 20, 21]. Interestingly, a specific distribution of LGE, namely a ring-like pattern, was independently associated with ventricular arrhythmias in patients with dilated cardiomyopathy, and proved more robust than multifocal LGE [4]. No association was found between LGE and LVEF, which might partly explain the discordant results of ICD trials in non-ischemic cardiomyopathy [4]. Grey zone burden has been analysed in a population comprising ischaemic and non-ischaemic cardiomyopathy patients, suggesting that it also has a role to play in the SCD risk stratification of non-ischemic cardiomyopathy, although no subgroup analysis was performed [10]. A relation that is independent of LVEF has been established between native T1 mapping values and appropriate ICD therapy, SCD and ventricular arrhythmias in patients with non-ischemic cardiomyopathy [5, 22, 23]. Interestingly, in a prospective study of ICD recipients, native T1 mapping values were independently associated with SCD in non-ischemic cardiomyopathy, but not in ischemic cardiomyopathy [23]. T1 post-contrast mapping values are also predictive of ventricular tachycardia recurrence after catheter ablation [24]. In the International T1 Multicentre CMR Outcome Study (T1-CMR; NCT02407197), the utility of various CMR parameters, including LGE, ECV and T1 mapping, will be evaluated for SCD prediction in patients with non-ischemic cardiomyopathy.

Hypertrophic cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is the most common cause of SCD in young adults, and the prevention of SCD is one of the primary management goals of this disease [25]. In a study of > 2400 individuals with HCM, the risk of appropriate ICD therapy was similar in patients with an LVEF of 35–40% and those with an LVEF < 35% [26]. A threshold of 35% can therefore not be directly transposed from ischemic cardiomyopathy to HCM for the purpose of SCD risk stratification. Impaired speckle tracking echocardiography-derived LV GLS, as well as an increased LVMD, have been linked to SCD risk and ventricular arrhythmias in persons with HCM (Fig. 3)—independent of LVEF [27, 28]. In studies demonstrating the prognostic value of LV GLS and LVMD, LVEF was not significantly associated with ventricular arrhythmias on univariable analysis, highlighting the limited value of using this parameter to risk stratify HCM patients [27, 28]. Both the presence and burden of LGE on CMR have been associated with ventricular arrhythmia and SCD risk in HCM—independent of LVEF. In a study of > 1200 persons with HCM, LGE extent remained independently associated with SCD when excluding individuals with an LVEF < 50% [29]. Use of LGE ≥ 15% of LV mass is recommended by the American College of Cardiology/American Heart Association HCM guideline as a marker of SCD risk [3032]. Using the presence of LGE as a risk stratifier in HCM, however, is limited by the fact that 60–90% of patients with HCM have at least some degree of LGE [33]. While quantification of the LGE burden potentially circumvents this limitation, variation in LGE scanning sequences, LGE quantification and selection bias of studies make clinical implementation of LGE quantification challenging. In contrast to the US guideline, the European Society of Cardiology’s HCM guideline does not recommend the use of LGE for SCD risk stratification [32]. Elevated T2-weighted short-tau inversion recovery values on CMR have been associated with non-sustained ventricular tachycardia in a pilot study, likely reflecting myocardial oedema secondary to microvascular ischemia (Fig. 3; [33]). Native T1 mapping and extracellular volume (ECV) have also been correlated with SCD risk in HCM patients, and ECV was associated with SCD independent of LVEF [34, 35]. A multinational CMR study (NCT01915615) with the aim of investigating various CMR biomarkers in predicting SCD risk in HCM has completed enrolment, and results are expected in 2024 [36].

Cardiac sarcoidosis

Similar to HCM, LVEF is limited in its ability to risk-stratify patients with sarcoidosis for SCD, since most who experience appropriate ICD therapy have an LVEF > 35% [37]. Impaired LV GLS was independently associated with ventricular arrhythmias and all-cause mortality in a study of 120 patients with cardiac sarcoidosis [38]. LVEF did not achieve significance for the primary endpoint in univariable analysis, emphasizing its limited value in this population [38]. The presence and extent of LGE on CMR are also associated with the risk of SCD, including those patients with LVEF > 35% [39]. PET imaging, demonstrating myocardial inflammation with perfusion-metabolic imaging (82Rb and 18F-[fluorodeoxyglucose] FDG), is another marker of ventricular arrhythmias in cardiac sarcoidosis patients—independent of LVEF [40]. Two studies, NCT03356756 and the Cardiac Sarcoidosis Multi-Center Prospective Cohort (CHASM-CS; NCT01477359), are enrolling patients for combined 18F‑FDG PET and CMR imaging and follow-up.

Practical conclusion

Although the majority of individuals who experience SCD have an LVEF > 35%, the decision to implant an ICD for primary prevention remains predicated on an LVEF threshold of 35%. Modern cardiac imaging techniques can visualize different components of SCD arrhythmogenesis, namely the substrate, trigger and modulating factors. While most techniques are focused on the substrate, technical progress has allowed tissue heterogeneity to be imaged, rather than electrically inert scar. Multimodality cardiac imaging has demonstrated the ability to risk stratify patients with an LVEF > 35% effectively for the prediction of SCD. In order to integrate advanced cardiac imaging into routine practice for SCD risk stratification, future studies should address not only the relative merits of various imaging modalities and parameters to determine which have the highest utility, but also the lack of imaging-guided outcome data.

Declarations

Conflict of interest

The Department of Cardiology, Heart Lung Centre, Leiden University Medical Centre received research grants from Abbott Vascular, Bayer, Biotronik, Bioventrix, Boston Scientific, Edwards Lifesciences, GE Healthcare, Ionis and Medtronic. J.J. Bax received speaker fees from Abbott Vascular. P. van der Bijl has nothing to disclose.
For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated in each case.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

Herzschrittmachertherapie + Elektrophysiologie

Print-Titel

  • Themenbezogene Hefte zu aktuellen Fragen der Elektrophysiologie sowie der Diagnostik und Therapie von Herzrhythmusstörungen

  • Organ der Deutschen Gesellschaft für Kardiologie - Herz- und Kreislaufforschung e.V.
  • Journal affiliated to the European Heart Rhythm Association 
  • Partnerjournal der AG Rhythmologie der ÖKG

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Literatur
4.
Zurück zum Zitat Chen W, Qian W, Zhang X, Li D, Qian Z, Xu H, Liao S, Chen X, Wang Y, Hou X et al (2021) Ring-like late gadolinium enhancement for predicting ventricular tachyarrhythmias in non-ischaemic dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 22(10):1130–1138. https://doi.org/10.1093/ehjci/jeab117CrossRefPubMed Chen W, Qian W, Zhang X, Li D, Qian Z, Xu H, Liao S, Chen X, Wang Y, Hou X et al (2021) Ring-like late gadolinium enhancement for predicting ventricular tachyarrhythmias in non-ischaemic dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 22(10):1130–1138. https://​doi.​org/​10.​1093/​ehjci/​jeab117CrossRefPubMed
6.
Zurück zum Zitat Ersboll M, Valeur N, Andersen MJ, Mogensen UM, Vinther M, Svendsen JH, Moller JE, Kisslo J, Velazquez EJ, Hassager C et al (2013) Early echocardiographic deformation analysis for the prediction of sudden cardiac death and life-threatening arrhythmias after myocardial infarction. JACC Cardiovasc Imaging 6(8):851–860. https://doi.org/10.1016/j.jcmg.2013.05.009CrossRefPubMed Ersboll M, Valeur N, Andersen MJ, Mogensen UM, Vinther M, Svendsen JH, Moller JE, Kisslo J, Velazquez EJ, Hassager C et al (2013) Early echocardiographic deformation analysis for the prediction of sudden cardiac death and life-threatening arrhythmias after myocardial infarction. JACC Cardiovasc Imaging 6(8):851–860. https://​doi.​org/​10.​1016/​j.​jcmg.​2013.​05.​009CrossRefPubMed
7.
Zurück zum Zitat Izquierdo M, Ruiz-Granell R, Bonanad C, Chaustre F, Gomez C, Ferrero A, Lopez-Lereu P, Monmeneu JV, Nunez J, Chorro FJ et al (2013) Value of early cardiovascular magnetic resonance for the prediction of adverse arrhythmic cardiac events after a first noncomplicated ST-segment-elevation myocardial infarction. Circ Cardiovasc Imaging 6(5):755–761. https://doi.org/10.1161/CIRCIMAGING.113.000702CrossRefPubMed Izquierdo M, Ruiz-Granell R, Bonanad C, Chaustre F, Gomez C, Ferrero A, Lopez-Lereu P, Monmeneu JV, Nunez J, Chorro FJ et al (2013) Value of early cardiovascular magnetic resonance for the prediction of adverse arrhythmic cardiac events after a first noncomplicated ST-segment-elevation myocardial infarction. Circ Cardiovasc Imaging 6(5):755–761. https://​doi.​org/​10.​1161/​CIRCIMAGING.​113.​000702CrossRefPubMed
9.
Zurück zum Zitat Roes SD, Borleffs CJ, van der Geest RJ, Westenberg JJ, Marsan NA, Kaandorp TA, Reiber JH, Zeppenfeld K, Lamb HJ, de Roos A et al (2009) Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ Cardiovasc Imaging 2(3):183–190. https://doi.org/10.1161/CIRCIMAGING.108.826529CrossRefPubMed Roes SD, Borleffs CJ, van der Geest RJ, Westenberg JJ, Marsan NA, Kaandorp TA, Reiber JH, Zeppenfeld K, Lamb HJ, de Roos A et al (2009) Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ Cardiovasc Imaging 2(3):183–190. https://​doi.​org/​10.​1161/​CIRCIMAGING.​108.​826529CrossRefPubMed
12.
Zurück zum Zitat Piccini JP, Starr AZ, Horton JR, Shaw LK, Lee KL, Al-Khatib SM, Iskandrian AE, O’Connor CM, Borges-Neto S (2010) Single-photon emission computed tomography myocardial perfusion imaging and the risk of sudden cardiac death in patients with coronary disease and left ventricular ejection fraction〉35%. J Am Coll Cardiol 56(3):206–214. https://doi.org/10.1016/j.jacc.2010.01.061CrossRefPubMed Piccini JP, Starr AZ, Horton JR, Shaw LK, Lee KL, Al-Khatib SM, Iskandrian AE, O’Connor CM, Borges-Neto S (2010) Single-photon emission computed tomography myocardial perfusion imaging and the risk of sudden cardiac death in patients with coronary disease and left ventricular ejection fraction〉35%. J Am Coll Cardiol 56(3):206–214. https://​doi.​org/​10.​1016/​j.​jacc.​2010.​01.​061CrossRefPubMed
13.
Zurück zum Zitat Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, Agostini D, Weiland F, Chandna H, Narula J et al (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol 55(20):2212–2221. https://doi.org/10.1016/j.jacc.2010.01.014CrossRefPubMed Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, Agostini D, Weiland F, Chandna H, Narula J et al (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol 55(20):2212–2221. https://​doi.​org/​10.​1016/​j.​jacc.​2010.​01.​014CrossRefPubMed
14.
Zurück zum Zitat Fallavollita JA, Heavey BM, Luisi AJ Jr., Michalek SM, Baldwa S, Mashtare TL Jr., Hutson AD, Dekemp RA, Haka MS, Sajjad M et al (2014) Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 63(2):141–149. https://doi.org/10.1016/j.jacc.2013.07.096CrossRefPubMed Fallavollita JA, Heavey BM, Luisi AJ Jr., Michalek SM, Baldwa S, Mashtare TL Jr., Hutson AD, Dekemp RA, Haka MS, Sajjad M et al (2014) Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 63(2):141–149. https://​doi.​org/​10.​1016/​j.​jacc.​2013.​07.​096CrossRefPubMed
15.
Zurück zum Zitat Selvanayagam JB, Hartshorne T, Billot L, Grover S, Hillis GS, Jung W, Krum H, Prasad S, McGavigan AD (2017) Cardiovascular magnetic resonance-GUIDEd management of mild to moderate left ventricular systolic dysfunction (CMR GUIDE): study protocol for a randomized controlled trial. Ann Noninvasive Electrocardiol 22(4):e12420. https://doi.org/10.1111/anec.12420CrossRefPubMedCentral Selvanayagam JB, Hartshorne T, Billot L, Grover S, Hillis GS, Jung W, Krum H, Prasad S, McGavigan AD (2017) Cardiovascular magnetic resonance-GUIDEd management of mild to moderate left ventricular systolic dysfunction (CMR GUIDE): study protocol for a randomized controlled trial. Ann Noninvasive Electrocardiol 22(4):e12420. https://​doi.​org/​10.​1111/​anec.​12420CrossRefPubMedCentral
16.
Zurück zum Zitat Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G et al (2005) Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 352(3):225–237. https://doi.org/10.1056/NEJMoa043399CrossRefPubMed Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G et al (2005) Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 352(3):225–237. https://​doi.​org/​10.​1056/​NEJMoa043399CrossRefPubMed
17.
Zurück zum Zitat Kadish A, Dyer A, Daubert JP, Quigg R, Estes NA, Anderson KP, Calkins H, Hoch D, Goldberger J, Shalaby A et al (2004) Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med 350(21):2151–2158. https://doi.org/10.1056/NEJMoa033088CrossRefPubMed Kadish A, Dyer A, Daubert JP, Quigg R, Estes NA, Anderson KP, Calkins H, Hoch D, Goldberger J, Shalaby A et al (2004) Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med 350(21):2151–2158. https://​doi.​org/​10.​1056/​NEJMoa033088CrossRefPubMed
18.
Zurück zum Zitat Kober L, Thune JJ, Nielsen JC, Haarbo J, Videbaek L, Korup E, Jensen G, Hildebrandt P, Steffensen FH, Bruun NE et al (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375(13):1221–1230. https://doi.org/10.1056/NEJMoa1608029CrossRefPubMed Kober L, Thune JJ, Nielsen JC, Haarbo J, Videbaek L, Korup E, Jensen G, Hildebrandt P, Steffensen FH, Bruun NE et al (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375(13):1221–1230. https://​doi.​org/​10.​1056/​NEJMoa1608029CrossRefPubMed
22.
Zurück zum Zitat Chen Z, Sohal M, Voigt T, Sammut E, Tobon-Gomez C, Child N, Jackson T, Shetty A, Bostock J, Cooklin M et al (2015) Myocardial tissue characterization by cardiac magnetic resonance imaging using T1 mapping predicts ventricular arrhythmia in ischemic and non-ischemic cardiomyopathy patients with implantable cardioverter-defibrillators. Heart Rhythm 12(4):792–801. https://doi.org/10.1016/j.hrthm.2014.12.020CrossRefPubMed Chen Z, Sohal M, Voigt T, Sammut E, Tobon-Gomez C, Child N, Jackson T, Shetty A, Bostock J, Cooklin M et al (2015) Myocardial tissue characterization by cardiac magnetic resonance imaging using T1 mapping predicts ventricular arrhythmia in ischemic and non-ischemic cardiomyopathy patients with implantable cardioverter-defibrillators. Heart Rhythm 12(4):792–801. https://​doi.​org/​10.​1016/​j.​hrthm.​2014.​12.​020CrossRefPubMed
23.
Zurück zum Zitat Claridge S, Mennuni S, Jackson T, Behar JM, Porter B, Sieniewicz B, Bostock J, O’Neill M, Murgatroyd F, Gill J et al (2017) Substrate-dependent risk stratification for implantable cardioverter defibrillator therapies using cardiac magnetic resonance imaging: the importance of T1 mapping in nonischemic patients. J Cardiovasc Electrophysiol 28(7):785–795. https://doi.org/10.1111/jce.13226CrossRefPubMed Claridge S, Mennuni S, Jackson T, Behar JM, Porter B, Sieniewicz B, Bostock J, O’Neill M, Murgatroyd F, Gill J et al (2017) Substrate-dependent risk stratification for implantable cardioverter defibrillator therapies using cardiac magnetic resonance imaging: the importance of T1 mapping in nonischemic patients. J Cardiovasc Electrophysiol 28(7):785–795. https://​doi.​org/​10.​1111/​jce.​13226CrossRefPubMed
24.
Zurück zum Zitat Muser D, Nucifora G, Castro SA, Enriquez A, Chahal CAA, Magnani S, Kumareswaran R, Arkles J, Supple G, Schaller R et al (2021) Myocardial substrate characterization by CMR T1 mapping in patients with NICM and no LGE undergoing catheter ablation of VT. JACC Clin Electrophysiol 7(7):831–840. https://doi.org/10.1016/j.jacep.2020.10.002CrossRefPubMed Muser D, Nucifora G, Castro SA, Enriquez A, Chahal CAA, Magnani S, Kumareswaran R, Arkles J, Supple G, Schaller R et al (2021) Myocardial substrate characterization by CMR T1 mapping in patients with NICM and no LGE undergoing catheter ablation of VT. JACC Clin Electrophysiol 7(7):831–840. https://​doi.​org/​10.​1016/​j.​jacep.​2020.​10.​002CrossRefPubMed
25.
Zurück zum Zitat Avanesov M, Munch J, Weinrich J, Well L, Saring D, Stehning C, Tahir E, Bohnen S, Radunski UK, Muellerleile K et al (2017) Prediction of the estimated 5‑year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR. Eur Radiol 27(12):5136–5145. https://doi.org/10.1007/s00330-017-4869-xCrossRefPubMed Avanesov M, Munch J, Weinrich J, Well L, Saring D, Stehning C, Tahir E, Bohnen S, Radunski UK, Muellerleile K et al (2017) Prediction of the estimated 5‑year risk of sudden cardiac death and syncope or non-sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy using late gadolinium enhancement and extracellular volume CMR. Eur Radiol 27(12):5136–5145. https://​doi.​org/​10.​1007/​s00330-017-4869-xCrossRefPubMed
28.
29.
Zurück zum Zitat Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, Lesser JR, Gruner C, Crean AM, Rakowski H et al (2014) Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130(6):484–495. https://doi.org/10.1161/CIRCULATIONAHA.113.007094CrossRefPubMed Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, Lesser JR, Gruner C, Crean AM, Rakowski H et al (2014) Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130(6):484–495. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​113.​007094CrossRefPubMed
30.
Zurück zum Zitat Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P et al (2020) 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation 142(25):e533–e557. https://doi.org/10.1161/CIR.0000000000000938CrossRefPubMed Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P et al (2020) 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation 142(25):e533–e557. https://​doi.​org/​10.​1161/​CIR.​0000000000000938​CrossRefPubMed
32.
Zurück zum Zitat Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European society of cardiology (ESC). Eur Heart J 35(39):2733–2779. https://doi.org/10.1093/eurheartj/ehu284CrossRefPubMed Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European society of cardiology (ESC). Eur Heart J 35(39):2733–2779. https://​doi.​org/​10.​1093/​eurheartj/​ehu284CrossRefPubMed
34.
Zurück zum Zitat Li Y, Liu X, Yang F, Wang J, Xu Y, Fang T, Pu L, Zhou X, Han Y, Chen Y (2021) Prognostic value of myocardial extracellular volume fraction evaluation based on cardiac magnetic resonance T1 mapping with T1 long and short in hypertrophic cardiomyopathy. Eur Radiol 31(7):4557–4567. https://doi.org/10.1007/s00330-020-07650-7CrossRefPubMed Li Y, Liu X, Yang F, Wang J, Xu Y, Fang T, Pu L, Zhou X, Han Y, Chen Y (2021) Prognostic value of myocardial extracellular volume fraction evaluation based on cardiac magnetic resonance T1 mapping with T1 long and short in hypertrophic cardiomyopathy. Eur Radiol 31(7):4557–4567. https://​doi.​org/​10.​1007/​s00330-020-07650-7CrossRefPubMed
37.
Zurück zum Zitat Kron J, Sauer W, Schuller J, Bogun F, Crawford T, Sarsam S, Rosenfeld L, Mitiku TY, Cooper JM, Mehta D et al (2013) Efficacy and safety of implantable cardiac defibrillators for treatment of ventricular arrhythmias in patients with cardiac sarcoidosis. Europace 15(3):347–354. https://doi.org/10.1093/europace/eus316CrossRefPubMed Kron J, Sauer W, Schuller J, Bogun F, Crawford T, Sarsam S, Rosenfeld L, Mitiku TY, Cooper JM, Mehta D et al (2013) Efficacy and safety of implantable cardiac defibrillators for treatment of ventricular arrhythmias in patients with cardiac sarcoidosis. Europace 15(3):347–354. https://​doi.​org/​10.​1093/​europace/​eus316CrossRefPubMed
38.
Zurück zum Zitat Joyce E, Ninaber MK, Katsanos S, Debonnaire P, Kamperidis V, Bax JJ, Taube C, Delgado V, Ajmone Marsan N (2015) Subclinical left ventricular dysfunction by echocardiographic speckle-tracking strain analysis relates to outcome in sarcoidosis. Eur J Heart Fail 17(1):51–62. https://doi.org/10.1002/ejhf.205CrossRefPubMed Joyce E, Ninaber MK, Katsanos S, Debonnaire P, Kamperidis V, Bax JJ, Taube C, Delgado V, Ajmone Marsan N (2015) Subclinical left ventricular dysfunction by echocardiographic speckle-tracking strain analysis relates to outcome in sarcoidosis. Eur J Heart Fail 17(1):51–62. https://​doi.​org/​10.​1002/​ejhf.​205CrossRefPubMed
40.
Metadaten
Titel
Imaging for risk stratification of sudden cardiac death
verfasst von
Pieter van der Bijl, MD PhD
Jeroen J. Bax, MD PhD
Publikationsdatum
16.07.2022
Verlag
Springer Medizin
Erschienen in
Herzschrittmachertherapie + Elektrophysiologie / Ausgabe 3/2022
Print ISSN: 0938-7412
Elektronische ISSN: 1435-1544
DOI
https://doi.org/10.1007/s00399-022-00884-6

Weitere Artikel der Ausgabe 3/2022

Herzschrittmachertherapie + Elektrophysiologie 3/2022 Zur Ausgabe

Neuigkeiten aus der Young EP

Neuigkeiten aus der Young EP

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

TAVI versus Klappenchirurgie: Neue Vergleichsstudie sorgt für Erstaunen

21.05.2024 TAVI Nachrichten

Bei schwerer Aortenstenose und obstruktiver KHK empfehlen die Leitlinien derzeit eine chirurgische Kombi-Behandlung aus Klappenersatz plus Bypass-OP. Diese Empfehlung wird allerdings jetzt durch eine aktuelle Studie infrage gestellt – mit überraschender Deutlichkeit.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.