Skip to main content
Erschienen in: Inflammation 3/2023

03.02.2023 | ORIGINAL ARTICLE

Inhibition of SHP2 by the Small Molecule Drug SHP099 Prevents Lipopolysaccharide-Induced Acute Lung Injury in Mice

verfasst von: Shuhui Ye, Bowen Zuo, Lenan Xu, Yue Wu, Ruixiang Luo, Lin Ma, Wanxin Yao, Lingfeng Chen, Guang Liang, Yanmei Zhang

Erschienen in: Inflammation | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Excessive pulmonary inflammation in acute lung injury (ALI) causes high patient mortality. Anti-inflammatory therapy, combined with infection resistance, can help to prevent ALI and save lives. The expression of Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP2) was found to be significantly higher in macrophages and lung tissues with ALI, and SHP2-associated MAPK pathways were activated by lipopolysaccharide (LPS). The knockdown of the SHP2 gene suppressed the LPS-induced release of inflammatory factors and the phosphorylation of regulators in the NF-κB pathways in macrophages. Our findings showed crosstalk between the LPS-induced inflammatory pathway and the SHP2-associated MAPK pathways. SHP2 inhibition could be a valuable therapeutic approach for inhibiting excessive inflammation in ALI. We discovered that giving SHP099, a specific allosteric inhibitor of SHP2, to mice with ALI and sepsis relieves ALI and significantly increases animal survival. Our study highlights the important role of SHP2 in ALI development and demonstrates the potential application of SHP099 for treating ALI.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Chang, C.J., et al. 2022. SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 74 (2): 131–142.CrossRefPubMed Chang, C.J., et al. 2022. SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 74 (2): 131–142.CrossRefPubMed
2.
Zurück zum Zitat Zhang, Y., et al. 2016. Manipulating the air-filled zebrafish swim bladder as a neutrophilic inflammation model for acute lung injury. Cell Death & Disease 7 (11): e2470.CrossRef Zhang, Y., et al. 2016. Manipulating the air-filled zebrafish swim bladder as a neutrophilic inflammation model for acute lung injury. Cell Death & Disease 7 (11): e2470.CrossRef
3.
Zurück zum Zitat Ouyang, W., et al. 2020. SHP2 deficiency promotes Staphylococcus aureus pneumonia following influenza infection. Cell Proliferation 53 (1): e12721.CrossRefPubMed Ouyang, W., et al. 2020. SHP2 deficiency promotes Staphylococcus aureus pneumonia following influenza infection. Cell Proliferation 53 (1): e12721.CrossRefPubMed
4.
Zurück zum Zitat Ahmed, T.A., et al. 2019. SHP2 drives adaptive resistance to ERK signaling inhibition in molecularly defined subsets of ERK-dependent tumors. Cell Rep 26 (1): p. 65–78 e5. Ahmed, T.A., et al. 2019. SHP2 drives adaptive resistance to ERK signaling inhibition in molecularly defined subsets of ERK-dependent tumors. Cell Rep 26 (1): p. 65–78 e5.
5.
6.
Zurück zum Zitat McPherson, V.A., et al. 2009. SH2 domain-containing phosphatase-2 protein-tyrosine phosphatase promotes Fc epsilon RI-induced activation of Fyn and Erk pathways leading to TNF alpha release from bone marrow-derived mast cells. The Journal of Immunology 183 (8): 4940–4947.CrossRefPubMed McPherson, V.A., et al. 2009. SH2 domain-containing phosphatase-2 protein-tyrosine phosphatase promotes Fc epsilon RI-induced activation of Fyn and Erk pathways leading to TNF alpha release from bone marrow-derived mast cells. The Journal of Immunology 183 (8): 4940–4947.CrossRefPubMed
7.
Zurück zum Zitat Qiu, Z., et al. 2017. Deletion of Shp2 in bronchial epithelial cells impairs IL-25 production in vitro, but has minor influence on asthmatic inflammation in vivo. PLoS ONE 12 (5): e0177334.CrossRefPubMedPubMedCentral Qiu, Z., et al. 2017. Deletion of Shp2 in bronchial epithelial cells impairs IL-25 production in vitro, but has minor influence on asthmatic inflammation in vivo. PLoS ONE 12 (5): e0177334.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Zhao, L., et al. 2016. Shp2 deficiency impairs the inflammatory response against Haemophilus influenzae by regulating macrophage polarization. Journal of Infectious Diseases 214 (4): 625–633.CrossRefPubMed Zhao, L., et al. 2016. Shp2 deficiency impairs the inflammatory response against Haemophilus influenzae by regulating macrophage polarization. Journal of Infectious Diseases 214 (4): 625–633.CrossRefPubMed
9.
Zurück zum Zitat Zhang, X., et al. 2012. Loss of Shp2 in alveoli epithelia induces deregulated surfactant homeostasis, resulting in spontaneous pulmonary fibrosis. The FASEB Journal 26 (6): 2338–2350.CrossRefPubMed Zhang, X., et al. 2012. Loss of Shp2 in alveoli epithelia induces deregulated surfactant homeostasis, resulting in spontaneous pulmonary fibrosis. The FASEB Journal 26 (6): 2338–2350.CrossRefPubMed
10.
Zurück zum Zitat Chichger, H., et al. 2015. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function. American Journal of Respiratory Cell and Molecular Biology 52 (6): 695–707.CrossRefPubMedPubMedCentral Chichger, H., et al. 2015. SH2 domain-containing protein tyrosine phosphatase 2 and focal adhesion kinase protein interactions regulate pulmonary endothelium barrier function. American Journal of Respiratory Cell and Molecular Biology 52 (6): 695–707.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Zhang, Y., et al. 2021. Shp2 regulates PM2.5-induced airway epithelial barrier dysfunction by modulating ERK1/2 signaling pathway. Toxicology Letters 350: 62–70. Zhang, Y., et al. 2021. Shp2 regulates PM2.5-induced airway epithelial barrier dysfunction by modulating ERK1/2 signaling pathway. Toxicology Letters 350: 62–70.
12.
Zurück zum Zitat Chen, W., J.G. Garcia, and J.R. Jacobson. 2010. Integrin beta4 attenuates SHP-2 and MAPK signaling and reduces human lung endothelial inflammatory responses. Journal of Cellular Biochemistry 110 (3): 718–724.CrossRefPubMedPubMedCentral Chen, W., J.G. Garcia, and J.R. Jacobson. 2010. Integrin beta4 attenuates SHP-2 and MAPK signaling and reduces human lung endothelial inflammatory responses. Journal of Cellular Biochemistry 110 (3): 718–724.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Paccoud, R., et al. 2021. SHP2 drives inflammation-triggered insulin resistance by reshaping tissue macrophage populations. Science Translational Medicine 13 (591). Paccoud, R., et al. 2021. SHP2 drives inflammation-triggered insulin resistance by reshaping tissue macrophage populations. Science Translational Medicine 13 (591).
14.
Zurück zum Zitat Chen, Y.N., et al. 2016. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535 (7610): 148–152.CrossRefPubMed Chen, Y.N., et al. 2016. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535 (7610): 148–152.CrossRefPubMed
15.
Zurück zum Zitat Kano, H., et al. 2021. SHP2 inhibition enhances the effects of tyrosine kinase inhibitors in preclinical models of treatment-naive ALK-, ROS1-, or EGFR-altered non-small cell lung cancer. Molecular Cancer Therapeutics 20 (9): 1653–1662.CrossRefPubMed Kano, H., et al. 2021. SHP2 inhibition enhances the effects of tyrosine kinase inhibitors in preclinical models of treatment-naive ALK-, ROS1-, or EGFR-altered non-small cell lung cancer. Molecular Cancer Therapeutics 20 (9): 1653–1662.CrossRefPubMed
16.
Zurück zum Zitat Dardaei, L., et al. 2018. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nature Medicine 24 (4): 512–517.CrossRefPubMedPubMedCentral Dardaei, L., et al. 2018. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nature Medicine 24 (4): 512–517.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Tanaka, K.A., et al. 2015. Cystine improves survival rates in a LPS-induced sepsis mouse model. Clinical Nutrition 34 (6): 1159–1165.CrossRefPubMed Tanaka, K.A., et al. 2015. Cystine improves survival rates in a LPS-induced sepsis mouse model. Clinical Nutrition 34 (6): 1159–1165.CrossRefPubMed
18.
Zurück zum Zitat Hao, H., et al. 2017. Farnesoid X receptor regulation of the NLRP3 Inflammasome underlies cholestasis-associated sepsis. Cell Metabolism 25 (4): 856–867 e5. Hao, H., et al. 2017. Farnesoid X receptor regulation of the NLRP3 Inflammasome underlies cholestasis-associated sepsis. Cell Metabolism 25 (4): 856–867 e5.
19.
Zurück zum Zitat Wang, Y., et al. 2015. MD-2 as the target of a novel small molecule, L6H21, in the attenuation of LPS-induced inflammatory response and sepsis. British Journal of Pharmacology 172 (17): 4391–4405.CrossRefPubMedPubMedCentral Wang, Y., et al. 2015. MD-2 as the target of a novel small molecule, L6H21, in the attenuation of LPS-induced inflammatory response and sepsis. British Journal of Pharmacology 172 (17): 4391–4405.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Balamayooran, G., et al. 2010. Mechanisms of neutrophil accumulation in the lungs against bacteria. American Journal of Respiratory Cell and Molecular Biology 43 (1): 5–16.CrossRefPubMed Balamayooran, G., et al. 2010. Mechanisms of neutrophil accumulation in the lungs against bacteria. American Journal of Respiratory Cell and Molecular Biology 43 (1): 5–16.CrossRefPubMed
22.
Zurück zum Zitat Nie, Y., et al. 2019. Dehydrocostus lactone suppresses LPS-induced acute lung injury and macrophage activation through NF-kappaB signaling pathway mediated by p38 MAPK and Akt. Molecules 24 (8). Nie, Y., et al. 2019. Dehydrocostus lactone suppresses LPS-induced acute lung injury and macrophage activation through NF-kappaB signaling pathway mediated by p38 MAPK and Akt. Molecules 24 (8).
23.
Zurück zum Zitat Ding, Y.H., et al. 2019. Isoalantolactone suppresses LPS-induced inflammation by inhibiting TRAF6 ubiquitination and alleviates acute lung injury. Acta Pharmacologica Sinica 40 (1): 64–74.CrossRefPubMed Ding, Y.H., et al. 2019. Isoalantolactone suppresses LPS-induced inflammation by inhibiting TRAF6 ubiquitination and alleviates acute lung injury. Acta Pharmacologica Sinica 40 (1): 64–74.CrossRefPubMed
24.
Zurück zum Zitat Tang, J., et al. 2021. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. International Immunopharmacology 91: 107272.CrossRefPubMed Tang, J., et al. 2021. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. International Immunopharmacology 91: 107272.CrossRefPubMed
25.
Zurück zum Zitat Yang, L., et al. 2021. Cardamonin inhibits LPS-induced inflammatory responses and prevents acute lung injury by targeting myeloid differentiation factor 2. Phytomedicine 93: 153785.CrossRefPubMed Yang, L., et al. 2021. Cardamonin inhibits LPS-induced inflammatory responses and prevents acute lung injury by targeting myeloid differentiation factor 2. Phytomedicine 93: 153785.CrossRefPubMed
26.
Zurück zum Zitat Shimazu, R., et al. 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. Journal of Experimental Medicine 189 (11): 1777–1782.CrossRefPubMedPubMedCentral Shimazu, R., et al. 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. Journal of Experimental Medicine 189 (11): 1777–1782.CrossRefPubMedPubMedCentral
28.
30.
Zurück zum Zitat Maroun, C.R., et al. 2000. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Molecular and Cellular Biology 20 (22): 8513–8525.CrossRefPubMedPubMedCentral Maroun, C.R., et al. 2000. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Molecular and Cellular Biology 20 (22): 8513–8525.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Kamiya, N., H.K. Kim, and P.D. King. 2014. Regulation of bone and skeletal development by the SHP-2 protein tyrosine phosphatase. Bone 69: 55–60.CrossRefPubMed Kamiya, N., H.K. Kim, and P.D. King. 2014. Regulation of bone and skeletal development by the SHP-2 protein tyrosine phosphatase. Bone 69: 55–60.CrossRefPubMed
32.
Zurück zum Zitat Song, Z., et al. 2021. Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies. Acta Pharm Sin B 11 (1): 13–29.CrossRefPubMed Song, Z., et al. 2021. Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies. Acta Pharm Sin B 11 (1): 13–29.CrossRefPubMed
33.
Zurück zum Zitat Frearson, J.A., and D.R. Alexander. 1997. The role of phosphotyrosine phosphatases in haematopoietic cell signal transduction. BioEssays 19 (5): 417–427.CrossRefPubMed Frearson, J.A., and D.R. Alexander. 1997. The role of phosphotyrosine phosphatases in haematopoietic cell signal transduction. BioEssays 19 (5): 417–427.CrossRefPubMed
34.
Zurück zum Zitat Qu, C.K. 2000. The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions. Cell Research 10 (4): 279–288.CrossRefPubMed Qu, C.K. 2000. The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions. Cell Research 10 (4): 279–288.CrossRefPubMed
35.
Zurück zum Zitat Neel, B.G., H. Gu, and L. Pao. 2003. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends in Biochemical Sciences 28 (6): 284–293.CrossRefPubMed Neel, B.G., H. Gu, and L. Pao. 2003. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends in Biochemical Sciences 28 (6): 284–293.CrossRefPubMed
36.
Zurück zum Zitat Gu, H., J.D. Griffin, and B.G. Neel. 1997. Characterization of two SHP-2-associated binding proteins and potential substrates in hematopoietic cells. Journal of Biological Chemistry 272 (26): 16421–16430.CrossRefPubMed Gu, H., J.D. Griffin, and B.G. Neel. 1997. Characterization of two SHP-2-associated binding proteins and potential substrates in hematopoietic cells. Journal of Biological Chemistry 272 (26): 16421–16430.CrossRefPubMed
37.
Zurück zum Zitat Zhu, G., et al. 2020. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell 183 (2): 490–502 e18. Zhu, G., et al. 2020. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell 183 (2): 490–502 e18.
38.
Zurück zum Zitat Butt, Y., A. Kurdowska, and T.C. Allen. 2016. Acute lung injury: A clinical and molecular review. Archives of Pathology and Laboratory Medicine 140 (4): 345–350.CrossRefPubMed Butt, Y., A. Kurdowska, and T.C. Allen. 2016. Acute lung injury: A clinical and molecular review. Archives of Pathology and Laboratory Medicine 140 (4): 345–350.CrossRefPubMed
39.
Zurück zum Zitat Hughes, K.T., and M.B. Beasley. 2017. Pulmonary manifestations of acute lung injury: More than just diffuse alveolar damage. Archives of Pathology and Laboratory Medicine 141 (7): 916–922.CrossRefPubMed Hughes, K.T., and M.B. Beasley. 2017. Pulmonary manifestations of acute lung injury: More than just diffuse alveolar damage. Archives of Pathology and Laboratory Medicine 141 (7): 916–922.CrossRefPubMed
40.
Zurück zum Zitat Bitterman, P.B. 1992. Pathogenesis of fibrosis in acute lung injury. The American Journal of Medicine. Bitterman, P.B. 1992. Pathogenesis of fibrosis in acute lung injury. The American Journal of Medicine.
41.
Zurück zum Zitat He, Y.Q., et al. 2021. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacological Research 163: 105224.CrossRefPubMed He, Y.Q., et al. 2021. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacological Research 163: 105224.CrossRefPubMed
42.
Zurück zum Zitat Zoulikha, M., et al. 2022. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharmaceutica Sinica B 12 (2): 600–620.CrossRefPubMed Zoulikha, M., et al. 2022. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharmaceutica Sinica B 12 (2): 600–620.CrossRefPubMed
43.
Zurück zum Zitat Wang, D., and Q. Cao. 2022. Shp2 in alveolar macrophages regulates macrophage I phenotype in acute lung injury. International Journal of Toxicology 41 (5): 412–419.CrossRefPubMed Wang, D., and Q. Cao. 2022. Shp2 in alveolar macrophages regulates macrophage I phenotype in acute lung injury. International Journal of Toxicology 41 (5): 412–419.CrossRefPubMed
44.
Zurück zum Zitat Xiao, J., et al. 2020. Combined administration of SHP2 inhibitor SHP099 and the alpha7nAChR agonist PNU282987 protect mice against DSSinduced colitis. Molecular Medicine Reports 22 (3): 2235–2244.CrossRefPubMedPubMedCentral Xiao, J., et al. 2020. Combined administration of SHP2 inhibitor SHP099 and the alpha7nAChR agonist PNU282987 protect mice against DSSinduced colitis. Molecular Medicine Reports 22 (3): 2235–2244.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Poli-de-Figueiredo, L.F., et al. 2008. Experimental models of sepsis and their clinical relevance. Shock 30 (Suppl 1): 53–59.CrossRefPubMed Poli-de-Figueiredo, L.F., et al. 2008. Experimental models of sepsis and their clinical relevance. Shock 30 (Suppl 1): 53–59.CrossRefPubMed
46.
Zurück zum Zitat Ritter, C., et al. 2003. Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Medicine 29 (10): 1782–1789.CrossRefPubMed Ritter, C., et al. 2003. Oxidative parameters and mortality in sepsis induced by cecal ligation and perforation. Intensive Care Medicine 29 (10): 1782–1789.CrossRefPubMed
Metadaten
Titel
Inhibition of SHP2 by the Small Molecule Drug SHP099 Prevents Lipopolysaccharide-Induced Acute Lung Injury in Mice
verfasst von
Shuhui Ye
Bowen Zuo
Lenan Xu
Yue Wu
Ruixiang Luo
Lin Ma
Wanxin Yao
Lingfeng Chen
Guang Liang
Yanmei Zhang
Publikationsdatum
03.02.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01784-8

Weitere Artikel der Ausgabe 3/2023

Inflammation 3/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.