Skip to main content

09.05.2024 | RESEARCH

Iron Overload–Dependent Ferroptosis Aggravates LPS-Induced Acute Lung Injury by Impairing Mitochondrial Function

verfasst von: Xiaocen Wang, Tingting Wei, Jinlong Luo, Ke Lang, Yansha Song, Xinyi Ning, Yencheng Chao, Zhaolin Gu, Linlin Wang, Cuicui Chen, Dong Yang, Yuanlin Song

Erschienen in: Inflammation

Einloggen, um Zugang zu erhalten

Abstract

Ferroptosis is a newly proposed form of programmed cell death that is iron-dependent and closely linked to oxidative stress. Its specific morphological changes include shrunken mitochondria, increased density of mitochondrial membrane, and rupture or disappearance of mitochondrial cristae. The main mechanism of ferroptosis involves excessive free iron reacting with membrane phospholipids, known as the Fenton reaction, resulting in lipid peroxidation. However, the role of iron in acute lung injury (ALI) remains largely unknown. In this study, LPS was instilled into the airway to induce ALI in mice. We observed a significant increase in iron concentration during ALI, accompanied by elevated levels of lipid peroxidation markers such as malonaldehyde (MDA) and 4-hydroxynonenal (4-HNE). Treatment with the iron chelator deferoxamine (DFO) or ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed lipid peroxidation and significantly attenuates lung injury. Similarly, DFO or Fer-1 treatment improved the cell survival significantly in vitro. These results demonstrated that ferroptosis occurs during ALI and that targeting ferroptosis is an effective treatment strategy. Interestingly, we found that the increased iron was primarily concentrated in mitochondria and DFO treatment effectively restored normal mitochondria morphology. To further confirm the damaging effect of iron on mitochondria, we performed mitochondrial stress tests in vitro, which revealed that iron stimulation led to mitochondrial dysfunction, characterized by impaired basal respiratory capacity, ATP production capacity, and maximum respiratory capacity. MitoTEMPO, an antioxidant targeting mitochondria, exhibited superior efficacy in improving iron-induced mitochondrial dysfunction compared to the broad-spectrum antioxidant NAC. Treatment with MitoTEMPO more effectively alleviated ALI. In conclusion, ferroptosis contributes to the pathogenesis of ALI and aggravates ALI by impairing mitochondrial function.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ranieri, V.M., et al. 2012. Acute respiratory distress syndrome: the Berlin Definition. Journal of the American Medical Association 307 (23): 2526–2533.PubMed Ranieri, V.M., et al. 2012. Acute respiratory distress syndrome: the Berlin Definition. Journal of the American Medical Association 307 (23): 2526–2533.PubMed
2.
Zurück zum Zitat Thompson, B.T., R.C. Chambers, and K.D. Liu. 2017. Acute respiratory distress syndrome. New England Journal of Medicine 377 (6): 562–572.CrossRefPubMed Thompson, B.T., R.C. Chambers, and K.D. Liu. 2017. Acute respiratory distress syndrome. New England Journal of Medicine 377 (6): 562–572.CrossRefPubMed
3.
Zurück zum Zitat Ashbaugh, D.G., et al. 1967. Acute respiratory distress in adults. Lancet 2 (7511): 319–323.CrossRefPubMed Ashbaugh, D.G., et al. 1967. Acute respiratory distress in adults. Lancet 2 (7511): 319–323.CrossRefPubMed
4.
Zurück zum Zitat Bellani, G., et al. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. Journal of the American Medical Association 315 (8): 788–800.CrossRefPubMed Bellani, G., et al. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. Journal of the American Medical Association 315 (8): 788–800.CrossRefPubMed
5.
6.
Zurück zum Zitat Tang, D., et al. 2021. Ferroptosis: Molecular mechanisms and health implications. Cell Research 31 (2): 107–125.CrossRefPubMed Tang, D., et al. 2021. Ferroptosis: Molecular mechanisms and health implications. Cell Research 31 (2): 107–125.CrossRefPubMed
7.
Zurück zum Zitat Stoyanovsky, D.A., et al. 2019. Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radical Biology & Medicine 133: 153–161.CrossRef Stoyanovsky, D.A., et al. 2019. Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radical Biology & Medicine 133: 153–161.CrossRef
8.
Zurück zum Zitat Liu, Q., et al. 2021. Iron homeostasis and disorders revisited in the sepsis. Free Radical Biology & Medicine 165: 1–13.CrossRef Liu, Q., et al. 2021. Iron homeostasis and disorders revisited in the sepsis. Free Radical Biology & Medicine 165: 1–13.CrossRef
9.
Zurück zum Zitat Jiang, X., and B.R. Stockwell. 2021. Ferroptosis: Mechanisms, biology and role in disease. Nature Reviews Molecular Cell Biology 22 (4): 266–282.CrossRefPubMedPubMedCentral Jiang, X., and B.R. Stockwell. 2021. Ferroptosis: Mechanisms, biology and role in disease. Nature Reviews Molecular Cell Biology 22 (4): 266–282.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Camaschella, C., and A. Nai. 2016. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. British Journal of Haematology 172 (4): 512–523.CrossRefPubMed Camaschella, C., and A. Nai. 2016. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. British Journal of Haematology 172 (4): 512–523.CrossRefPubMed
11.
Zurück zum Zitat Singh, N., et al. 2014. Brain iron homeostasis: From molecular mechanisms to clinical significance and therapeutic opportunities. Antioxidants & Redox Signaling 20 (8): 1324–1363.CrossRef Singh, N., et al. 2014. Brain iron homeostasis: From molecular mechanisms to clinical significance and therapeutic opportunities. Antioxidants & Redox Signaling 20 (8): 1324–1363.CrossRef
12.
Zurück zum Zitat Rouault, T.A. 2013. Iron metabolism in the CNS: Implications for neurodegenerative diseases. Nature Reviews Neuroscience 14 (8): 551–564.CrossRefPubMed Rouault, T.A. 2013. Iron metabolism in the CNS: Implications for neurodegenerative diseases. Nature Reviews Neuroscience 14 (8): 551–564.CrossRefPubMed
13.
Zurück zum Zitat Ramm, G.A., and R.G. Ruddell. 2005. Hepatotoxicity of iron overload: Mechanisms of iron-induced hepatic fibrogenesis. Seminars in Liver Disease 25 (4): 433–449.CrossRefPubMed Ramm, G.A., and R.G. Ruddell. 2005. Hepatotoxicity of iron overload: Mechanisms of iron-induced hepatic fibrogenesis. Seminars in Liver Disease 25 (4): 433–449.CrossRefPubMed
14.
Zurück zum Zitat Zarjou, A., et al. 2013. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. The Journal of Clinical Investigation 123 (10): 4423–4434.CrossRefPubMedPubMedCentral Zarjou, A., et al. 2013. Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. The Journal of Clinical Investigation 123 (10): 4423–4434.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Chang, A.L., et al. 2015. Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis. Free Radical Biology & Medicine 78: 179–189.CrossRef Chang, A.L., et al. 2015. Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis. Free Radical Biology & Medicine 78: 179–189.CrossRef
16.
Zurück zum Zitat Terman, A., et al. 2010. Mitochondrial turnover and aging of long-lived postmitotic cells: The mitochondrial-lysosomal axis theory of aging. Antioxidants & Redox Signaling 12 (4): 503–535.CrossRef Terman, A., et al. 2010. Mitochondrial turnover and aging of long-lived postmitotic cells: The mitochondrial-lysosomal axis theory of aging. Antioxidants & Redox Signaling 12 (4): 503–535.CrossRef
17.
Zurück zum Zitat Carré, J.E., et al. 2010. Survival in critical illness is associated with early activation of mitochondrial biogenesis. American Journal of Respiratory and Critical Care Medicine 182 (6): 745–751.CrossRefPubMedPubMedCentral Carré, J.E., et al. 2010. Survival in critical illness is associated with early activation of mitochondrial biogenesis. American Journal of Respiratory and Critical Care Medicine 182 (6): 745–751.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Singer, M. 2014. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5 (1): 66–72.CrossRefPubMed Singer, M. 2014. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5 (1): 66–72.CrossRefPubMed
19.
Zurück zum Zitat Islam, M.N., et al. 2012. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature Medicine 18 (5): 759–765.CrossRefPubMedPubMedCentral Islam, M.N., et al. 2012. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nature Medicine 18 (5): 759–765.CrossRefPubMedPubMedCentral
20.
21.
Zurück zum Zitat Meyer, A., et al. 2013. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: Central actor and therapeutic target. Experimental Physiology 98 (6): 1063–1078.CrossRefPubMed Meyer, A., et al. 2013. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: Central actor and therapeutic target. Experimental Physiology 98 (6): 1063–1078.CrossRefPubMed
22.
Zurück zum Zitat Cloonan, S.M., et al. 2016. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nature Medicine 22 (2): 163–174.CrossRefPubMedPubMedCentral Cloonan, S.M., et al. 2016. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nature Medicine 22 (2): 163–174.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Galaris, D., A. Barbouti, and K. Pantopoulos. 2019. Iron homeostasis and oxidative stress: An intimate relationship. Biochimica et Biophysica Acta, Molecular Cell Research 1866 (12): 118535.CrossRefPubMed Galaris, D., A. Barbouti, and K. Pantopoulos. 2019. Iron homeostasis and oxidative stress: An intimate relationship. Biochimica et Biophysica Acta, Molecular Cell Research 1866 (12): 118535.CrossRefPubMed
24.
Zurück zum Zitat Rochette, L., et al. 2022. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis. International Journal of Molecular Sciences 24 (1): 449. Rochette, L., et al. 2022. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis. International Journal of Molecular Sciences 24 (1): 449.
25.
Zurück zum Zitat Yang, W.S., and B.R. Stockwell. 2016. Ferroptosis: Death by lipid peroxidation. Trends in Cell Biology 26 (3): 165–176.CrossRefPubMed Yang, W.S., and B.R. Stockwell. 2016. Ferroptosis: Death by lipid peroxidation. Trends in Cell Biology 26 (3): 165–176.CrossRefPubMed
26.
Zurück zum Zitat Liu, J., et al. 2022. Loss of MBD2 ameliorates LPS-induced alveolar epithelial cell apoptosis and ALI in mice via modulating intracellular zinc homeostasis. Federation of American Societies for Experimental Biology Journal 36 (2): e22162.CrossRefPubMed Liu, J., et al. 2022. Loss of MBD2 ameliorates LPS-induced alveolar epithelial cell apoptosis and ALI in mice via modulating intracellular zinc homeostasis. Federation of American Societies for Experimental Biology Journal 36 (2): e22162.CrossRefPubMed
27.
Zurück zum Zitat Chambers, E., S. Rounds, and Q. Lu. 2018. Pulmonary endothelial cell apoptosis in emphysema and acute lung injury. Advances in Anatomy, Embryology and Cell Biology 228: 63–86.CrossRefPubMed Chambers, E., S. Rounds, and Q. Lu. 2018. Pulmonary endothelial cell apoptosis in emphysema and acute lung injury. Advances in Anatomy, Embryology and Cell Biology 228: 63–86.CrossRefPubMed
28.
Zurück zum Zitat Chopra, M., J.S. Reuben, and A.C. Sharma. 2009. Acute lung injury: Apoptosis and signaling mechanisms. Experimental Biology and Medicine (Maywood, N.J.) 234 (4): 361–371.CrossRefPubMed Chopra, M., J.S. Reuben, and A.C. Sharma. 2009. Acute lung injury: Apoptosis and signaling mechanisms. Experimental Biology and Medicine (Maywood, N.J.) 234 (4): 361–371.CrossRefPubMed
Metadaten
Titel
Iron Overload–Dependent Ferroptosis Aggravates LPS-Induced Acute Lung Injury by Impairing Mitochondrial Function
verfasst von
Xiaocen Wang
Tingting Wei
Jinlong Luo
Ke Lang
Yansha Song
Xinyi Ning
Yencheng Chao
Zhaolin Gu
Linlin Wang
Cuicui Chen
Dong Yang
Yuanlin Song
Publikationsdatum
09.05.2024
Verlag
Springer US
Erschienen in
Inflammation
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02022-5

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.