Skip to main content
Erschienen in: Inflammation 2/2024

21.11.2023 | RESEARCH

Long Non-Coding RNA ANRIL Regulates Inflammatory Factor Expression in Ulcerative Colitis Via the miR-191-5p/SATB1 Axis

verfasst von: Ke-Qi Yu, Chuan-Fei Li, Lu Ye, Ya Song, Yan-Hui Wang, Yu-Ru Lin, Sheng-Tao Liao, Zhe-Chuan Mei, Lin Lv

Erschienen in: Inflammation | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Ulcerative colitis, an inflammatory bowel disease, manifests with symptoms such as abdominal pain, diarrhea, and mucopurulent feces. The long non-coding RNA (lncRNA) ANRIL exhibits significantly reduced expression in UC, yet its specific mechanism is unknown. This study revealed that ANRIL is involved in the progression of UC by inhibiting IL-6 and TNF-α via miR-191-5P/SATB1 axis. We found that in patients with UC, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were significantly overexpressed in inflamed colon sites, whereas ANRIL was significantly under-expressed and associated with disease severity. The downregulation of ANRIL resulted in the increased expression of IL-6 and TNF-α in LPS-treated FHCs. ANRIL directly targeted miR-191-5p, thereby inhibiting its expression and augmenting SATB1 expression. Moreover, overexpression of miR-191-5p abolished ANRIL-mediated inhibition of IL-6 and TNF-α production. Dual luciferase reporter assays revealed the specific binding of miR-191-5p to ANRIL and SATB1. Furthermore, the downregulation of ANRIL promoted DSS-induced colitis in mice. Together, we provide evidence that ANRIL plays a critical role in regulating IL-6 and TNF-α expression in UC by modulating the miR-191-5p/SATB1 axis. Our study provides novel insights into progression and molecular therapeutic strategies in UC.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ungaro, R., S. Mehandru, P.B. Allen, et al. 2017. Ulcerative colitis. Lancet 389 (10080): 1756–1770.PubMedCrossRef Ungaro, R., S. Mehandru, P.B. Allen, et al. 2017. Ulcerative colitis. Lancet 389 (10080): 1756–1770.PubMedCrossRef
2.
Zurück zum Zitat Conrad, K., D. Roggenbuck, and M.W. Laass. 2014. Diagnosis and classification of ulcerative colitis. Autoimmunity Reviews 13 (4–5): 463–466.PubMedCrossRef Conrad, K., D. Roggenbuck, and M.W. Laass. 2014. Diagnosis and classification of ulcerative colitis. Autoimmunity Reviews 13 (4–5): 463–466.PubMedCrossRef
3.
Zurück zum Zitat Ng, S.C., H.Y. Shi, N. Hamidi, et al. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 390 (10114): 2769–2778.PubMedCrossRef Ng, S.C., H.Y. Shi, N. Hamidi, et al. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 390 (10114): 2769–2778.PubMedCrossRef
4.
Zurück zum Zitat Hauso, Ø., T.C. Martinsen, and H. Waldum. 2015. 5-Aminosalicylic acid, a specific drug for ulcerative colitis. Scandinavian Journal of Gastroenterology 50 (8): 933–941.PubMedCrossRef Hauso, Ø., T.C. Martinsen, and H. Waldum. 2015. 5-Aminosalicylic acid, a specific drug for ulcerative colitis. Scandinavian Journal of Gastroenterology 50 (8): 933–941.PubMedCrossRef
5.
Zurück zum Zitat Bonovas, S., K. Pantavou, D. Evripidou, et al. 2018. Safety of biological therapies in ulcerative colitis: An umbrella review of meta-analyses. Best Practice & Research Clinical Gastroenterology 32–33: 43–47.CrossRef Bonovas, S., K. Pantavou, D. Evripidou, et al. 2018. Safety of biological therapies in ulcerative colitis: An umbrella review of meta-analyses. Best Practice & Research Clinical Gastroenterology 32–33: 43–47.CrossRef
6.
Zurück zum Zitat Umehara, Y., M. Kudo, R. Nakaoka, et al. 2006. Serum proinflammatory cytokines and adhesion molecules in ulcerative colitis. Hepato-Gastroenterology 53 (72): 879–882.PubMed Umehara, Y., M. Kudo, R. Nakaoka, et al. 2006. Serum proinflammatory cytokines and adhesion molecules in ulcerative colitis. Hepato-Gastroenterology 53 (72): 879–882.PubMed
7.
Zurück zum Zitat Neurath, M.F., S. Finotto, I. Fuss, et al. 2001. Regulation of T-cell apoptosis in inflammatory bowel disease: To die or not to die, that is the mucosal question. Trends in Immunology 22 (1): 21–26.PubMedCrossRef Neurath, M.F., S. Finotto, I. Fuss, et al. 2001. Regulation of T-cell apoptosis in inflammatory bowel disease: To die or not to die, that is the mucosal question. Trends in Immunology 22 (1): 21–26.PubMedCrossRef
8.
Zurück zum Zitat Kusugami, K., A. Fukatsu, M. Tanimoto, et al. 1995. Elevation of interleukin-6 in inflammatory bowel disease is macrophage- and epithelial cell-dependent. Digestive Diseases and Sciences 40 (5): 949–959.PubMedCrossRef Kusugami, K., A. Fukatsu, M. Tanimoto, et al. 1995. Elevation of interleukin-6 in inflammatory bowel disease is macrophage- and epithelial cell-dependent. Digestive Diseases and Sciences 40 (5): 949–959.PubMedCrossRef
9.
Zurück zum Zitat Olsen, T., R. Goll, G. Cui, et al. 2009. TNF-alpha gene expression in colorectal mucosa as a predictor of remission after induction therapy with infliximab in ulcerative colitis. Cytokine 46 (2): 222–227.PubMedCrossRef Olsen, T., R. Goll, G. Cui, et al. 2009. TNF-alpha gene expression in colorectal mucosa as a predictor of remission after induction therapy with infliximab in ulcerative colitis. Cytokine 46 (2): 222–227.PubMedCrossRef
10.
Zurück zum Zitat Page, M.J., J. Bester, and E. Pretorius. 2018. The inflammatory effects of TNF-α and complement component 3 on coagulation. Science and Reports 8 (1): 1812.CrossRef Page, M.J., J. Bester, and E. Pretorius. 2018. The inflammatory effects of TNF-α and complement component 3 on coagulation. Science and Reports 8 (1): 1812.CrossRef
11.
Zurück zum Zitat Farina, G., R. Lemaire, P. Pancari, et al. 2009. Cartilage oligomeric matrix protein expression in systemic sclerosis reveals heterogeneity of dermal fibroblast responses to transforming growth factor beta. Annals of the Rheumatic Diseases 68 (3): 435–441.PubMedCrossRef Farina, G., R. Lemaire, P. Pancari, et al. 2009. Cartilage oligomeric matrix protein expression in systemic sclerosis reveals heterogeneity of dermal fibroblast responses to transforming growth factor beta. Annals of the Rheumatic Diseases 68 (3): 435–441.PubMedCrossRef
12.
Zurück zum Zitat Schulz, J.N., J. Nüchel, A. Niehoff, et al. 2016. COMP-assisted collagen secretion–a novel intracellular function required for fibrosis. Journal of Cell Science 129 (4): 706–716.PubMed Schulz, J.N., J. Nüchel, A. Niehoff, et al. 2016. COMP-assisted collagen secretion–a novel intracellular function required for fibrosis. Journal of Cell Science 129 (4): 706–716.PubMed
13.
Zurück zum Zitat Szondy, Z., and A. Pallai. 2017. Transmembrane TNF-alpha reverse signaling leading to TGF-beta production is selectively activated by TNF targeting molecules: Therapeutic implications. Pharmacological Research 115: 124–132.PubMedCrossRef Szondy, Z., and A. Pallai. 2017. Transmembrane TNF-alpha reverse signaling leading to TGF-beta production is selectively activated by TNF targeting molecules: Therapeutic implications. Pharmacological Research 115: 124–132.PubMedCrossRef
14.
Zurück zum Zitat Xu, H., Q. Li, Y. Zhao, et al. 2016. Intestinal NHE8 is highly expressed in goblet cells and its expression is subject to TNF-α regulation. American Journal of Physiology. Gastrointestinal and Liver Physiology 310 (2): G64-69.PubMedCrossRef Xu, H., Q. Li, Y. Zhao, et al. 2016. Intestinal NHE8 is highly expressed in goblet cells and its expression is subject to TNF-α regulation. American Journal of Physiology. Gastrointestinal and Liver Physiology 310 (2): G64-69.PubMedCrossRef
15.
Zurück zum Zitat Musch, M.W., L.L. Clarke, D. Mamah, et al. 2002. T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. The Journal of Clinical Investigation 110 (11): 1739–1747.PubMedPubMedCentralCrossRef Musch, M.W., L.L. Clarke, D. Mamah, et al. 2002. T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. The Journal of Clinical Investigation 110 (11): 1739–1747.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Li, X., Z. Wu, X. Fu, et al. 2013. Long Noncoding RNAs: Insights from Biological Features and Functions to Diseases. Medicinal Research Reviews 33 (3): 517–553.PubMedCrossRef Li, X., Z. Wu, X. Fu, et al. 2013. Long Noncoding RNAs: Insights from Biological Features and Functions to Diseases. Medicinal Research Reviews 33 (3): 517–553.PubMedCrossRef
17.
Zurück zum Zitat Ma, Z., Y.Y. Wang, H.W. Xin, et al. 2019. The expanding roles of long non-coding RNAs in the regulation of cancer stem cells. International Journal of Biochemistry & Cell Biology 108: 17–20.CrossRef Ma, Z., Y.Y. Wang, H.W. Xin, et al. 2019. The expanding roles of long non-coding RNAs in the regulation of cancer stem cells. International Journal of Biochemistry & Cell Biology 108: 17–20.CrossRef
18.
Zurück zum Zitat Ashrafizadeh, M., A. Zarrabi, E. Mostafavi, et al. 2022. Non-coding RNA-based regulation of inflammation. Seminars in Immunology 59: 101606.PubMedCrossRef Ashrafizadeh, M., A. Zarrabi, E. Mostafavi, et al. 2022. Non-coding RNA-based regulation of inflammation. Seminars in Immunology 59: 101606.PubMedCrossRef
19.
Zurück zum Zitat Chew, C.L., S.A. Conos, B. Unal, et al. 2018. Noncoding RNAs: Master Regulators of Inflammatory Signaling. Trends in Molecular Medicine 24 (1): 66–84.PubMedCrossRef Chew, C.L., S.A. Conos, B. Unal, et al. 2018. Noncoding RNAs: Master Regulators of Inflammatory Signaling. Trends in Molecular Medicine 24 (1): 66–84.PubMedCrossRef
20.
Zurück zum Zitat Chen, S.W., P.Y. Wang, Y.C. Liu, et al. 2016. Effect of Long Noncoding RNA H19 Overexpression on Intestinal Barrier Function and Its Potential Role in the Pathogenesis of Ulcerative Colitis. Inflammatory Bowel Diseases 22 (11): 2582–2592.PubMedCrossRef Chen, S.W., P.Y. Wang, Y.C. Liu, et al. 2016. Effect of Long Noncoding RNA H19 Overexpression on Intestinal Barrier Function and Its Potential Role in the Pathogenesis of Ulcerative Colitis. Inflammatory Bowel Diseases 22 (11): 2582–2592.PubMedCrossRef
21.
Zurück zum Zitat Padua, D., S. Mahurkar-Joshi, I.K. Law, et al. 2016. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. American Journal of Physiology. Gastrointestinal and Liver Physiology 311 (3): G446-457.PubMedPubMedCentralCrossRef Padua, D., S. Mahurkar-Joshi, I.K. Law, et al. 2016. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. American Journal of Physiology. Gastrointestinal and Liver Physiology 311 (3): G446-457.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Akıncılar, S.C., L. Wu, Q.F. Ng, et al. 2021. NAIL: An evolutionarily conserved lncRNA essential for licensing coordinated activation of p38 and NFκB in colitis. Gut 70 (10): 1857–1871.PubMedCrossRef Akıncılar, S.C., L. Wu, Q.F. Ng, et al. 2021. NAIL: An evolutionarily conserved lncRNA essential for licensing coordinated activation of p38 and NFκB in colitis. Gut 70 (10): 1857–1871.PubMedCrossRef
23.
Zurück zum Zitat Congrains, A., K. Kamide, M. Ohishi, et al. 2013. ANRIL: Molecular mechanisms and implications in human health. International Journal of Molecular Sciences 14 (1): 1278–1292.PubMedPubMedCentralCrossRef Congrains, A., K. Kamide, M. Ohishi, et al. 2013. ANRIL: Molecular mechanisms and implications in human health. International Journal of Molecular Sciences 14 (1): 1278–1292.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Zhang, D., G. Sun, H. Zhang, et al. 2017. Long non-coding RNA ANRIL indicates a poor prognosis of cervical cancer and promotes carcinogenesis via PI3K/Akt pathways. Biomedicine & Pharmacotherapy 85: 511–516.CrossRef Zhang, D., G. Sun, H. Zhang, et al. 2017. Long non-coding RNA ANRIL indicates a poor prognosis of cervical cancer and promotes carcinogenesis via PI3K/Akt pathways. Biomedicine & Pharmacotherapy 85: 511–516.CrossRef
25.
Zurück zum Zitat Royds, J.A., A.P. Pilbrow, A. Ahn, et al. 2015. The rs11515 Polymorphism Is More Frequent and Associated With Aggressive Breast Tumors with Increased ANRIL and Decreased p16 (INK4a) Expression. Frontiers in Oncology 5: 306.PubMed Royds, J.A., A.P. Pilbrow, A. Ahn, et al. 2015. The rs11515 Polymorphism Is More Frequent and Associated With Aggressive Breast Tumors with Increased ANRIL and Decreased p16 (INK4a) Expression. Frontiers in Oncology 5: 306.PubMed
26.
Zurück zum Zitat Mirza, A.H., C.H. Berthelsen, S.E. Seemann, et al. 2015. Transcriptomic landscape of lncRNAs in inflammatory bowel disease. Genome Med 7 (1): 39.PubMedPubMedCentralCrossRef Mirza, A.H., C.H. Berthelsen, S.E. Seemann, et al. 2015. Transcriptomic landscape of lncRNAs in inflammatory bowel disease. Genome Med 7 (1): 39.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Olsen, J., T.A. Gerds, J.B. Seidelin, et al. 2009. Diagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression data. Inflammatory Bowel Diseases 15 (7): 1032–1038.PubMedCrossRef Olsen, J., T.A. Gerds, J.B. Seidelin, et al. 2009. Diagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression data. Inflammatory Bowel Diseases 15 (7): 1032–1038.PubMedCrossRef
28.
Zurück zum Zitat Funakoshi, T., K. Yamashita, N. Ichikawa, et al. 2012. A novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates inflammatory colonic injury in mice. Journal of Crohn’s & Colitis 6 (2): 215–225.CrossRef Funakoshi, T., K. Yamashita, N. Ichikawa, et al. 2012. A novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates inflammatory colonic injury in mice. Journal of Crohn’s & Colitis 6 (2): 215–225.CrossRef
29.
Zurück zum Zitat Dieleman, L.A., M.J. Palmen, H. Akol, et al. 1998. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clinical and Experimental Immunology 114 (3): 385–391.PubMedPubMedCentralCrossRef Dieleman, L.A., M.J. Palmen, H. Akol, et al. 1998. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clinical and Experimental Immunology 114 (3): 385–391.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Lu, J.W., A. Rouzigu, L.H. Teng, et al. 2021. The Construction and Comprehensive Analysis of Inflammation-Related ceRNA Networks and Tissue-Infiltrating Immune Cells in Ulcerative Progression. BioMed Research International 2021: 6633442.PubMedPubMedCentralCrossRef Lu, J.W., A. Rouzigu, L.H. Teng, et al. 2021. The Construction and Comprehensive Analysis of Inflammation-Related ceRNA Networks and Tissue-Infiltrating Immune Cells in Ulcerative Progression. BioMed Research International 2021: 6633442.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Beyer, M., Y. Thabet, R.U. Müller, et al. 2011. Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nature Immunology 12 (9): 898–907.PubMedPubMedCentralCrossRef Beyer, M., Y. Thabet, R.U. Müller, et al. 2011. Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nature Immunology 12 (9): 898–907.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Kondo, M., Y. Tanaka, T. Kuwabara, et al. 2016. SATB1 Plays a Critical Role in Establishment of Immune Tolerance. The Journal of Immunology 196 (2): 563–572.PubMedCrossRef Kondo, M., Y. Tanaka, T. Kuwabara, et al. 2016. SATB1 Plays a Critical Role in Establishment of Immune Tolerance. The Journal of Immunology 196 (2): 563–572.PubMedCrossRef
33.
Zurück zum Zitat Yarani, R., A.H. Mirza, S. Kaur, et al. 2018. The emerging role of lncRNAs in inflammatory bowel disease. Experimental & Molecular Medicine 50 (12): 1–14.CrossRef Yarani, R., A.H. Mirza, S. Kaur, et al. 2018. The emerging role of lncRNAs in inflammatory bowel disease. Experimental & Molecular Medicine 50 (12): 1–14.CrossRef
34.
35.
Zurück zum Zitat Fernandes, J.C.R., S.M., Acuña, J.I. Aoki, et al. (2019). Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA, 5(1). Fernandes, J.C.R., S.M., Acuña, J.I. Aoki, et al. (2019). Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA, 5(1).
37.
Zurück zum Zitat Godnic, I., M. Zorc, D. Jevsinek Skok, et al. 2013. Genome-wide and species-wide in silico screening for intragenic MicroRNAs in human, mouse and chicken. PLoS ONE 8 (6): e65165.PubMedPubMedCentralCrossRef Godnic, I., M. Zorc, D. Jevsinek Skok, et al. 2013. Genome-wide and species-wide in silico screening for intragenic MicroRNAs in human, mouse and chicken. PLoS ONE 8 (6): e65165.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Zacharopoulou, E., M. Gazouli, M. Tzouvala, et al. 2017. The contribution of long non-coding RNAs in Inflammatory Bowel Diseases. Digestive and Liver Disease 49 (10): 1067–1072.PubMedCrossRef Zacharopoulou, E., M. Gazouli, M. Tzouvala, et al. 2017. The contribution of long non-coding RNAs in Inflammatory Bowel Diseases. Digestive and Liver Disease 49 (10): 1067–1072.PubMedCrossRef
39.
Zurück zum Zitat Xia, H., S. Li, Y. He, et al. 2022. Long non-coding RNA ANRIL serves as a potential marker of disease risk, inflammation, and disease activity of pediatric inflammatory bowel disease. Clinics and Research in Hepatology and Gastroenterology 46 (4): 101895.PubMedCrossRef Xia, H., S. Li, Y. He, et al. 2022. Long non-coding RNA ANRIL serves as a potential marker of disease risk, inflammation, and disease activity of pediatric inflammatory bowel disease. Clinics and Research in Hepatology and Gastroenterology 46 (4): 101895.PubMedCrossRef
40.
Zurück zum Zitat Zhou, X., Y. Zhang, M. Hu, et al. 2023. Resveratrol enhances MUC2 synthesis via the ANRIL-miR-34a axis to mitigate IBD. Am J Transl Res 15 (1): 363–372.PubMedPubMedCentral Zhou, X., Y. Zhang, M. Hu, et al. 2023. Resveratrol enhances MUC2 synthesis via the ANRIL-miR-34a axis to mitigate IBD. Am J Transl Res 15 (1): 363–372.PubMedPubMedCentral
41.
Zurück zum Zitat Lv, B., Z. Liu, S. Wang, et al. 2014. MiR-29a promotes intestinal epithelial apoptosis in ulcerative colitis by down-regulating Mcl-1. International Journal of Clinical and Experimental Pathology 7 (12): 8542–8552.PubMedPubMedCentral Lv, B., Z. Liu, S. Wang, et al. 2014. MiR-29a promotes intestinal epithelial apoptosis in ulcerative colitis by down-regulating Mcl-1. International Journal of Clinical and Experimental Pathology 7 (12): 8542–8552.PubMedPubMedCentral
42.
Zurück zum Zitat Wu, W., Y. He, X. Feng, et al. 2017. MicroRNA-206 is involved in the pathogenesis of ulcerative colitis via regulation of adenosine A3 receptor. Oncotarget 8 (1): 705–721.PubMedCrossRef Wu, W., Y. He, X. Feng, et al. 2017. MicroRNA-206 is involved in the pathogenesis of ulcerative colitis via regulation of adenosine A3 receptor. Oncotarget 8 (1): 705–721.PubMedCrossRef
43.
Zurück zum Zitat Alvarez, J.D., D.H. Yasui, H. Niida, et al. 2000. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes & Development 14 (5): 521–535.CrossRef Alvarez, J.D., D.H. Yasui, H. Niida, et al. 2000. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes & Development 14 (5): 521–535.CrossRef
44.
Zurück zum Zitat Cai, S., C.C. Lee, and T. Kohwi-Shigematsu. 2006. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nature Genetics 38 (11): 1278–1288.PubMedCrossRef Cai, S., C.C. Lee, and T. Kohwi-Shigematsu. 2006. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nature Genetics 38 (11): 1278–1288.PubMedCrossRef
45.
Zurück zum Zitat Yasui, D., M. Miyano, S. Cai, et al. 2002. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419 (6907): 641–645.PubMedCrossRef Yasui, D., M. Miyano, S. Cai, et al. 2002. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419 (6907): 641–645.PubMedCrossRef
46.
Zurück zum Zitat Agrelo, R., A. Souabni, M. Novatchkova, et al. 2009. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Developmental Cell 16 (4): 507–516.PubMedPubMedCentralCrossRef Agrelo, R., A. Souabni, M. Novatchkova, et al. 2009. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Developmental Cell 16 (4): 507–516.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Hao, B., A.K. Naik, A. Watanabe, et al. 2015. An anti-silencer- and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development. Journal of Experimental Medicine 212 (5): 809–824.PubMedPubMedCentralCrossRef Hao, B., A.K. Naik, A. Watanabe, et al. 2015. An anti-silencer- and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development. Journal of Experimental Medicine 212 (5): 809–824.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Gottimukkala, K.P., R. Jangid, I. Patta, et al. 2016. Regulation of SATB1 during thymocyte development by TCR signaling. Molecular Immunology 77: 34–43.PubMedPubMedCentralCrossRef Gottimukkala, K.P., R. Jangid, I. Patta, et al. 2016. Regulation of SATB1 during thymocyte development by TCR signaling. Molecular Immunology 77: 34–43.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Notani, D., K.P. Gottimukkala, R.S. Jayani, et al. 2010. Global regulator SATB1 recruits beta-catenin and regulates T(H)2 differentiation in Wnt-dependent manner. PLoS Biology 8 (1): e1000296.PubMedPubMedCentralCrossRef Notani, D., K.P. Gottimukkala, R.S. Jayani, et al. 2010. Global regulator SATB1 recruits beta-catenin and regulates T(H)2 differentiation in Wnt-dependent manner. PLoS Biology 8 (1): e1000296.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Ahlfors, H., A. Limaye, L.L. Elo, et al. 2010. SATB1 dictates expression of multiple genes including IL-5 involved in human T helper cell differentiation. Blood 116 (9): 1443–1453.PubMedPubMedCentralCrossRef Ahlfors, H., A. Limaye, L.L. Elo, et al. 2010. SATB1 dictates expression of multiple genes including IL-5 involved in human T helper cell differentiation. Blood 116 (9): 1443–1453.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Stephen, T.L., K.K. Payne, R.A. Chaurio, et al. 2017. SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells. Immunity 46 (1): 51–64.PubMedPubMedCentralCrossRef Stephen, T.L., K.K. Payne, R.A. Chaurio, et al. 2017. SATB1 Expression Governs Epigenetic Repression of PD-1 in Tumor-Reactive T Cells. Immunity 46 (1): 51–64.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Kitagawa, Y., N. Ohkura, Y. Kidani, et al. 2017. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nature Immunology 18 (2): 173–183.PubMedCrossRef Kitagawa, Y., N. Ohkura, Y. Kidani, et al. 2017. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nature Immunology 18 (2): 173–183.PubMedCrossRef
53.
Zurück zum Zitat Zhang, L.M., H.Y. Ju, Y.T. Wu, et al. 2018. Long non-coding RNA ANRIL promotes tumorgenesis through regulation of FGFR1 expression by sponging miR-125a-3p in head and neck squamous cell carcinoma. American Journal of Cancer Research 8 (11): 2296–2310.PubMedPubMedCentral Zhang, L.M., H.Y. Ju, Y.T. Wu, et al. 2018. Long non-coding RNA ANRIL promotes tumorgenesis through regulation of FGFR1 expression by sponging miR-125a-3p in head and neck squamous cell carcinoma. American Journal of Cancer Research 8 (11): 2296–2310.PubMedPubMedCentral
54.
Zurück zum Zitat Deng, L., J. Jiang, S. Chen, et al. 2022. Long Non-coding RNA ANRIL Downregulation Alleviates Neuroinflammation in an Ischemia Stroke Model via Modulation of the miR-671-5p/NF-κB Pathway. Neurochemical Research 47 (7): 2002–2015.PubMedCrossRef Deng, L., J. Jiang, S. Chen, et al. 2022. Long Non-coding RNA ANRIL Downregulation Alleviates Neuroinflammation in an Ischemia Stroke Model via Modulation of the miR-671-5p/NF-κB Pathway. Neurochemical Research 47 (7): 2002–2015.PubMedCrossRef
55.
Zurück zum Zitat Han, J., Y. Li, B. Zhang, et al. 2020. lncRNA TUG1 regulates ulcerative colitis through miR-142-5p/SOCS1 axis. Microbial Pathogenesis 143: 104139.PubMedCrossRef Han, J., Y. Li, B. Zhang, et al. 2020. lncRNA TUG1 regulates ulcerative colitis through miR-142-5p/SOCS1 axis. Microbial Pathogenesis 143: 104139.PubMedCrossRef
Metadaten
Titel
Long Non-Coding RNA ANRIL Regulates Inflammatory Factor Expression in Ulcerative Colitis Via the miR-191-5p/SATB1 Axis
verfasst von
Ke-Qi Yu
Chuan-Fei Li
Lu Ye
Ya Song
Yan-Hui Wang
Yu-Ru Lin
Sheng-Tao Liao
Zhe-Chuan Mei
Lin Lv
Publikationsdatum
21.11.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2024
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01925-z

Weitere Artikel der Ausgabe 2/2024

Inflammation 2/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.