Skip to main content

Open Access 24.04.2024 | Reviews

Melatonin in infants—physiology, pathophysiology and intervention options

verfasst von: Prof. Dr. med. Ekkehart Paditz

Erschienen in: Somnologie

Abstract

The effectiveness of melatonin in nonorganic sleep disorders in children and adolescents has been examined in 33 randomised controlled studies [1]. This review presents the current state of knowledge on the physiology, pharmacokinetics, pathophysiology and toxicity of melatonin in infancy based on well-documented studies. Up to the third month of life, premature and full-term babies cannot produce their own melatonin, so they are dependent on exogenous supply via their own mother’s breast milk, non-pooled breast milk or non-pooled formula. Non-pooled means that a distinction should be made between melatonin-rich night milk and melatonin-poor day milk. A number of intervention studies indicate that administration of melatonin to infants may have analgesic and antioxidant effects related to ophthalmological examinations, prevention of bronchopulmonary dysplasia, and the treatment of hypoxic ischaemic encephalopathies. Since melatonin concentrations in the mother’s blood, in breast milk and, e.g., also in cow’s milk show regular day–night fluctuations, and since breastfed infants have a more stable melatonin supply and fewer sleep disorders, infants who cannot be breastfed by their own mother should preferably have chrononutrition made from non-pooled human or cow’s milk. There has recently been evidence that infantile colic is a disorder with delayed development of chronobiological rhythms.
Hinweise
Scan QR code & read article online

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Historical development: from radical scavenger to sleep hormone

The neuroendocrine hormone melatonin (5-methoxy-N-acetyltryptamine) was discovered in 1958 by the American chemist and dermatologist Aaron B. Lerner (1920–2007) and described in more detail in 1959 [2, 3]. The Greek anatomist Herophilus of Alexandria (325–255 BC) is considered the first describer of the pineal gland. He viewed the organ referred to as Conarion as a sphincter for the flow of pneuma, while Galen (129–216 AD) already spoke of a gland that would support the venous networks of the brain. In 1543, Andreas Vesal (1514–1564) provided the first drawing of the pineal gland. Friedrich Tiedemann (1781–1861) assumed in 1816 that the foetal gland could be morphologically visualised from the fourth month of pregnancy onwards. René Descartes (1596–1650) referred to the pineal gland as the “right hand of the soul [4].” In 1717 and 1898, the first descriptions of pineal tumours by Charles Drelincourt and Otto Heubner followed, which contributed to the understanding of the pineal gland as an endocrine organ in the 20th century [5].
Nowadays, melatonin and vitamin D are considered the two fundamental hormones associated with night and day, as pineal melatonin synthesis and secretion are activated by sunset, while vitamin D is stimulated by UV light during the day [6]. The “timezyme” enzyme marks the rate-determining step of pulsatile melatonin synthesis in the pineal gland. Timezyme evolved more than 500 million years ago to establish a radical scavenger with the production of melatonin. Chronobiological time-keeping functions of melatonin emerged only in vertebrates and mammals [7]. Circadian fluctuations in melatonin concentration with a nighttime peak are detectable not only in blood but also in breast milk and cow’s milk [8, 9].

Objective

This work investigates the available data on the physiology and pathophysiology of melatonin in infancy, including the neonatal period, in breastfed and non-breastfed infants. Based on this, intervention effects related to melatonin in this age group are examined.

Methodology

PubMed searches were performed for the following features: ((melatonin[title/abstract]) AND (infant[title/abstract])). This generated 108 results, including 10 clinical studies. Of these, 2 studies were in pregnant women and those with cow’s milk intolerance, 2 were study protocols, and 2 animal experimental or cell biology studies, thus leaving 4 clinical studies [1013], the references of which were additionally evaluated. The results are presented in the form of thematic subject groups.

Results

In the first 3 months [14, 15] or up to the 5th–16th week of life (Fig. 1; [16]), infants cannot produce their own melatonin, as the maturation of the autonomic nervous system and circadian rhythms is not yet complete (Fig. 1); noradrenaline, as the essential biochemical stimulus for activation of pineal melatonin synthesis, is still absent during this time [1, 4]. This time interval is extended in premature infants and after neurological insults [14]. Optimal lighting in neonatal intensive care units, considering physiological day–night rhythms, can promote the development of chronobiological rhythms.
Therefore, in the first few months of life, infants depend on external melatonin intake, a) through melatonin contained in nocturnal breast milk, b) through non-pooled night milk from women’s milk or c) through appropriately adapted formula feeding in the form of chrononutrition made from non-pooled cow’s milk (Table 1; Fig. 2; [1, 1719]). Non-pooled means that melatonin-rich night milk is not mixed with melatonin-poor day milk [17, 20]. Several studies have shown that chronobiologically adapted chrononutrition in the form of “circadian-matched milk” [21] can significantly improve sleep parameters in infants [13, 18, 22] as well as food intake and growth (Fig. 3; [23]).
Table 1
Melatonin in breast milk
Author, year
Milk sample
Melatonin concentration
Aparici-Gonzalo S et al. 2020 [24]
One sample during the day 12–2 p.m. and one at night between midnight and 2 a.m. from colostrum (within 24 h after birth), transition milk (3–7 days), and mature follow-up milk (1 month after birth) from 21 and 17 women, respectively, with a mean age of 33 years, with epidural anaesthesia during normal delivery or elective caesarean section (healthy exclusively breastfed full-term infants born between 37–41 weeks without additional feeding, Apgar 9–10 at 1 min, birth weight 2900–3660 g)
Higher melatonin concentrations at night compared to daytime in colostrum, transition milk and mature follow-up milk (Fig. 2), daytime colostrum after normal delivery or caesarean section 14.7 vs. 30.3 pg/mL (p = 0.020)
Qin Y et al. 2019 [25]
Milk samples from 98 mothers on the 1st and 30th days of life of 66 full-term and 32 premature infants of 39th and 34th weeks
Significantly higher melatonin concentrations at night at 03:00 (23.5 pg/mL) compared to daytime at 09:00, 15:00 and 20:00 (3.27, 2.4 6.81 pg/mL) in colostrum, transition milk, and mature milk of mothers of premature and full-term infants
Illnerova H et al. 1993 [8]
Melatonin concentration in the blood and milk of 10 mothers 3–4 days after delivery
No measurable melatonin concentrations in the blood and milk during the day; at night, 280 ± 34 pmol/L in serum and 99 ± 26 pmol/L in breast milk
Katzer D et al. 2016 [26]
21 mothers: concentration of melatonin and glutathione peroxidase 3 (Gpx3) in serum and milk
“Nighttime” (22–10 h) significantly higher melatonin and Gpx3 concentrations in serum and milk compared to “daytime” (10–22 h): nighttime melatonin 7.3 pg/mL, Gpx3 1800 ng/mL, daytime 1.5 pg/mL and 1436 ng/mL ; i.e., 5.2 times higher melatonin concentrations in milk at night
The authors of different studies showed that unstable melatonin supply during this time with formula feeding instead of breastfeeding is associated with more fragmented sleep in infants or reduced sleep efficiency [13, 27].
Chronobiological fluctuations in terms of stable day–night rhythms of pulsatile melatonin synthesis cannot be detected in infants during the first months of life. This is because premature infants, compared to adults, have a significantly prolonged and interindividually variable elimination half-life of approximately 1.9–21 h in infants and < 1 h in adults after intravenous or oral melatonin administration. This prolonged half-life is associated with the immaturity of hepatic and renal pathways of metabolism and polymorphisms of hepatic enzymes (Table 2). Against this background, it is understandable that individual cases of infant deaths have been documented in connection with significant overdoses of melatonin, where very high accumulated melatonin concentrations were measured [4]. It remains unclear whether additional, as yet insufficiently investigated alternative metabolic pathways, play a role in infants [4].
Table 2
Pharmacokinetics of melatonin in premature infants compared to adults
Author, year
Sample
Elimination half-life t1/2
Cmax and tmax (minutes)
Merchant NM et al., 2012 [14]
n = 18 premature infants (9 male, 9 female) at 27th week, birthweight 610–1430 g on days 1–6 of life, breastfed, no artificial nutrition; concurrent treatment with caffeine 12.5 mg/kg as a loading dose and 6 mg/kg/day
16.91 h and 21.02 h after intravenous administrationa of 0.1 μg/kg/h over 2 h (n = 4) or 6 h (n = 4) or 0.02 μg/kg/h over 2 h (n = 6) or 0.01 μg/kg/h over 2 h (n = 2), or 0.04 μg/kg/h over 30 min (n = 2)
Cmax 393.3–554.5 pg/mL or 160–220 pg/mL at the end of the 6‑ or 2‑hour infusion
Carloni S et al., 2017 [28]
n = 15 premature infants (8 male, 7 female) at 26th–33rd week, birth weight 780–3200 g
6.20–15.51 h after 0.5 mg/kg melatonin via intragastric administration through nasogastric tube (n = 6) or 1.88–20.81 h after 1 mg/kg melatonin (n = 4) or 5.19–11.58 h after 5 mg/kg (n = 5)
Cmax 0.44 to 7.04 μg/mL after 2.91 to 4.70 h (averages for these 3 groups)
Andersen LPH et al., 2016 [29]
n = 12 healthy male adults, aged 27.1 ± 5.2 years
53.7 ± 7.0 min after oral administration of 10 mg melatonin at 8:00 a.m. or 39.4 ± 3.6 min after intravenous administration at intervals of 3–9 monthsb
Oral: Cmax 2500.5–8057.5 pg/mL after 40.8 ± 17.8 min
Intravenous: Cmax 174775.0–440362.5 pg/mL after intravenous bolus
a0.1 μg melatonin and 9 mg sodium chloride dissolved in 1 mL of water
boral: gelatine capsule taken with 50 mL of water; intravenous: 10 mg melatonin in 23 mL of 0.9% saline solution and 2 mL of 99.9% ethanol as a short infusion at a rate of 2.5 mL/min over 10 min
Several studies have demonstrated the analgesic effects of melatonin in infants during ophthalmological examinations (Table 3; Fig. 4).
Table 3
Analgesic effects of melatonin in infants (see also Fig. 4)
Author, year
Study type and dosage
Participants
Effects
Behura SS et al., 2022 [10]
RCT
n = 30 melatonin 4 mg/kg orallya 20 min before retinopathy screening vs. n = 30 24% sucrose 0.5 mL orally 2 min before retinopathy screening
Premature infants, < 34 weeks or < 2000 g, with 7 mL/kg of breast milk per feed
Comparable moderate effects of both substances on a pain scale in addition to heart rate and SaO2 (oxygen saturation) as well as apnoea, arrhythmia, vomiting or feeding problems within 24 h: severe pain in both groups during the examination (PIPP 14–17), moderate pain after 1 min (7–10), mild pain after 5 min (4–6)
Gitto E et al., 2012 [12], zit. bei Behura 2022 [10]
RCT
n = 30 melatonin 10 mg/kg intravenously (cited in [31]) plus sedation and analgesia vs.
n = 30 sedation and analgesia only (atropine, fentanyl, vecuronium)
Newborns during and after endotracheal intubation
Evidence of significant positive effects of melatonin administration (lower PIPP score, indicating less pain, and reduced release of pro-inflammatory and anti-inflammatory cytokines IL‑6, IL‑8, IL-10 and IL-12) during intubation and at 12, 24, 48 and 72 h under ventilation (p < 0.001)
PIPP premature infant pain profile score (score based on gestational age, behavioural state, maximum heart rate, reaction of eyebrows, eyes and nasolabial folds; score from 0 to a maximum of 21: < 6: no or mild pain; 6–12: moderate pain; > 12: severe pain) during 1 and 5 min after the procedure; administration of 10 mg/kg of oral paracetamol from PIPP 10
aMelatonin syrup containing 3 mg/mL, 4 mg/kg = 6.6 mL/kg, with reference to intravenous dosages of 3–10 mg/kg in newborns, pharmacokinetic dose estimates after oral administration in premature infants [28] and reference to analgesic effects of intravenous melatonin administration in mechanically ventilated premature infants [12], as well as the 30-minute interval before venipuncture in children aged 1–14 years [32]
There is also evidence of chronobiological disturbances in infant colic (Table 4; [30]) as well as of the effects of melatonin in neonatal hypoxic ischaemic encephalopathy (HIE; Table 5) and the prevention of bronchopulmonary dysplasia (BPD) (Table 6).
Table 4
Melatonin and infant colic
Author, year
Study type
Participant characteristics
Results
Egeli TU et al., 2023 [30]
Prospective cohort study/comparison of n = 49 infants with colica aged 6–8 weeks vs. n = 46 control group without colic (no significant differences in terms of gestational age 39 weeks, birthweight 3424 vs. 3261 g, 43% vs. 50% female, maternal smoking 12% vs. 15%, breastfeeding 84% vs. 83%, breastfeeding plus formula feeding 16% vs. 17%)
Significant differences in the colic group regarding increased light sensitivity (61% vs. 20%), defecation problems (49% vs. 22%), shortened sleep duration (10 h with a range of 2–16 h vs. 13 h with a range of 7–20 h), frequency of nighttime awakenings 4.5 times with a range of 1–10 times per night vs. 2.5 times with a range of 1–5 times per night
Evidence of “circadian rhythm disruption and infantile colic”: significantly higher nocturnal melatonin concentrations in the control group (p = 0.014); significant differences in the day–night variability of H3f3b mRNA activity as a marker for central clock activity in the buccal mucosa (p = 0.002). Melatonin would be lacking as a serotonin antagonist in the intestine during the first 3 months of life, leading to painful intestinal cramps and evening crying
aColic according to the criteria of Wessel
Table 5
Melatonin in neonatal hypoxic ischaemic encephalopathy (HIE)
Author, year
Study type, participants and dosage
Effects
Aly H et al., 2015 [34]
Prospective RCT
n = 30 HIE (15 with hypothermia therapy for 72 h vs. 15 with hypothermia plus melatonin 10 mg/kg for 5 days) vs. n = 15 healthy newborns
Increased melatonin, superoxide dismutase (SOD) and nitric oxide (NO) concentrations in the HIE groups compared to controls.
In the melatonin group, there was a stronger increase in melatonin on day 5 (p < 0.001) and reduced NO and SOD levels (p < 0.001 and 0.004, respectively).
There were fewer seizures in the follow-up EEG and fewer lesions in the white matter (MRI), as well as improved survival without neurological or developmental deficits in the melatonin group (p < 0.001)
Ahmad QM et al., 2018 [35]
Prospective RCT
Newborns with a mean gestational age of 36.81 ± 1.7 weeks: n = 40 HIE with a single dose of oral melatonin 10 mg via nasogastric tube vs. n = 40 HIE without melatonin administration
Survival rate higher in the melatonin group at 87% (35/40) vs. 65% (26/40)
Fulia F et al., 2001 [36]
Cohort study
n = 10 newborns with asphyxia: melatonin 80 mg in 8 doses of 10 mg every 2 h orally, starting within the first 6 h of life vs. n = 10 with asphyxia without melatonin administration compared to laboratory findings of healthy controls
Significant reduction in nitrite/nitrate and malondialdehyde levels in the melatonin group within 12 and 24 h; mortality: 0 in the melatonin group, 3/10 in the asphyxia group without melatonin administration
Jerez-Calero A et al., 2020 [37]
RCT
n = 13 hypothermia 33–34 °C for 72 h plus placebo term births at 39 weeks, birthweight 2974 g, umbilical cord pH 6.96 vs. n = 12 hypothermia for 72 h plus melatonin 5 mg/kg/day intravenously as a 2-hour infusion for the first 3 days of life, starting within the first 6 ha in term births at 39 weeks, birthweight 3057 g, umbilical cord pH 6.98
Significantly better neurological development in the melatonin group at 18 months (Bayley III score, p < 0.05), but no significant improvement in language and motor skills after 6 and 18 months (p = 0.057).
No stronger effects when considering the severity of the initial findings
aMelatonin concentration 6.5 mg/mL in an infusion solution with macrogol and propylene glycol
Table 6
Melatonin in the prevention of bronchopulmonary dysplasia (BPD)
Author, year
Study type, participants and dosage
Effects
Gharehbaghi MM et al. 2022 [38]
RCT
40 premature infants of 28–29 weeks, administration of surfactant once endotracheally with or without melatonin 5 mg/kg/day for 3 days via nasogastric tube
Significant reduction in ventilation duration 5.3 vs. 7.6 days (p = 0.003), hospitalisation 6.4 vs. 10.7 days (p = 0.02), BPD rate 45 vs. 60% (p = 0.02), rate of intraventricular haemorrhage 30 vs. 40% (p = 0.04), and mortality 7.5 vs. 15% (p = 0.009)

Practical conclusion

  • Melatonin is an essential chronobiological and antioxidant hormone throughout infancy. Since melatonin cannot be synthesised by infants until the age of 3 months, infants rely on melatonin present in breast milk or non-pooled women’s or cow’s milk preparations.
  • Infant colic and non-organic sleep disturbances in infancy are associated with melatonin deficiency and delayed development of circadian rhythms.
  • Several studies have shown that melatonin administration can be effective in the prevention of bronchopulmonary dysplasia, for pain reduction and in treatment of neonatal hypoxic ischaemic encephalopathy.
  • Attention is drawn to the prolonged melatonin elimination half-life of up to approximately 20 h in infancy and recent reports of deaths associated with melatonin overdose.

Declarations

Conflict of interest

E. Paditz is the managing partner of kleanthes Verlag für Medizin und Prävention GmbH & Co. KG. He is the applicant and inventor of the family of patent applications cited in this article [17].
All human studies described were conducted with the approval of the respective ethics committees, in accordance with national law and in accordance with the Declaration of Helsinki of 1975 (in its current revised version). This article does not include any studies on animals, except for Eriksson’s [9] veterinary medicine contribution.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Somnologie

Print-Titel

  • Aktuelles, gesichertes Fachwissen zu Ätiologie, Pathophysiologie, Differentialdiagnostik und Therapie von Schlafstörungen

• Multidisziplinärer Ansatz

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Paditz E (2024) Melatonin bei Schlafstörungen im Kindes- und Jugendalter. Monatsschr Kinderheilkd 172:44–51CrossRef Paditz E (2024) Melatonin bei Schlafstörungen im Kindes- und Jugendalter. Monatsschr Kinderheilkd 172:44–51CrossRef
2.
Zurück zum Zitat Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes1. J Am Chem Soc 80:2587–2587CrossRef Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes1. J Am Chem Soc 80:2587–2587CrossRef
3.
Zurück zum Zitat Lerner AB, Case JD, Heinzelman RV (1959) Structure of melatonin. J Am Chem Soc 81:6084–6085CrossRef Lerner AB, Case JD, Heinzelman RV (1959) Structure of melatonin. J Am Chem Soc 81:6084–6085CrossRef
4.
Zurück zum Zitat Paditz E, Renner B, Bauer M (2023) Melatoninstoffwechsel im Kindes- und Jugendalter. In: Schneider B, Aschmann-Mühlhans D (eds) Aktuelle Kinderschlafmedizin 2023. kleanthes, Dresden, pp 40–62 Paditz E, Renner B, Bauer M (2023) Melatoninstoffwechsel im Kindes- und Jugendalter. In: Schneider B, Aschmann-Mühlhans D (eds) Aktuelle Kinderschlafmedizin 2023. kleanthes, Dresden, pp 40–62
5.
Zurück zum Zitat Paditz E, Hahn G (2023) Schlafstörungen infolge von Pinealistumoren im Kindes- und Jugendalter. In: Schneider B, Aschmann-Mühlhans D (eds) Aktuelle Kinderschlafmedizin 2023. kleanthes, Dresden, pp 63–80 Paditz E, Hahn G (2023) Schlafstörungen infolge von Pinealistumoren im Kindes- und Jugendalter. In: Schneider B, Aschmann-Mühlhans D (eds) Aktuelle Kinderschlafmedizin 2023. kleanthes, Dresden, pp 63–80
6.
Zurück zum Zitat Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J (2022) Is Melatonin the “next vitamin D”?: a review of emerging science, clinical uses, safety, and dietary supplements. Nutrients 14(19):3934 Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J (2022) Is Melatonin the “next vitamin D”?: a review of emerging science, clinical uses, safety, and dietary supplements. Nutrients 14(19):3934
7.
Zurück zum Zitat Falcón J, Coon SL, Besseau L, Cazaméa-Catalan D, Fuentès M, Magnanou E, Paulin CH, Boeuf G, Sauzet S, Jørgensen EH, Mazan S, Wolf YI, Koonin EV, Steinbach PJ, Hyodo S, Klein DC (2014) Drastic neofunctionalization associated with evolution of the timezyme AANAT 500 Mya. Proc Natl Acad Sci U S A 111:314–319CrossRefPubMed Falcón J, Coon SL, Besseau L, Cazaméa-Catalan D, Fuentès M, Magnanou E, Paulin CH, Boeuf G, Sauzet S, Jørgensen EH, Mazan S, Wolf YI, Koonin EV, Steinbach PJ, Hyodo S, Klein DC (2014) Drastic neofunctionalization associated with evolution of the timezyme AANAT 500 Mya. Proc Natl Acad Sci U S A 111:314–319CrossRefPubMed
8.
Zurück zum Zitat Illnerova H, Buresova M, Presl J (1993) Melatonin rhythm in human milk. J Clin Endocrinol Metab 77:838–841PubMed Illnerova H, Buresova M, Presl J (1993) Melatonin rhythm in human milk. J Clin Endocrinol Metab 77:838–841PubMed
9.
Zurück zum Zitat Eriksson L, Valtonen M, Laitinen JT, Paananen M, Kaikkonen M (1998) Diurnal rhythm of melatonin in bovine milk: pharmacokinetics of exogenous melatonin in lactating cows and goats. Acta Vet Scand 39:301–310CrossRefPubMedPubMedCentral Eriksson L, Valtonen M, Laitinen JT, Paananen M, Kaikkonen M (1998) Diurnal rhythm of melatonin in bovine milk: pharmacokinetics of exogenous melatonin in lactating cows and goats. Acta Vet Scand 39:301–310CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Behura SS, Dhanawat A, Nayak B, Panda SK (2022) Comparison between oral melatonin and 24 % sucrose for pain management during retinopathy of prematurity screening: a randomized controlled trial. TurkJPediatr 64:1013–1020CrossRef Behura SS, Dhanawat A, Nayak B, Panda SK (2022) Comparison between oral melatonin and 24 % sucrose for pain management during retinopathy of prematurity screening: a randomized controlled trial. TurkJPediatr 64:1013–1020CrossRef
11.
Zurück zum Zitat Vásquez-Ruiz S, Maya-Barrios JA, Torres-Narváez P, Vega-Martínez BR, Rojas-Granados A, Escobar C, Angeles-Castellanos M (2014) A light/dark cycle in the NICU accelerates body weight gain and shortens time to discharge in preterm infants. Early Hum Dev 90:535–540CrossRefPubMed Vásquez-Ruiz S, Maya-Barrios JA, Torres-Narváez P, Vega-Martínez BR, Rojas-Granados A, Escobar C, Angeles-Castellanos M (2014) A light/dark cycle in the NICU accelerates body weight gain and shortens time to discharge in preterm infants. Early Hum Dev 90:535–540CrossRefPubMed
12.
Zurück zum Zitat Gitto E, Aversa S, Salpietro CD, Barberi I, Arrigo T, Trimarchi G, Reiter RJ, Pellegrino S (2012) Pain in neonatal intensive care: role of melatonin as an analgesic antioxidant. J Pineal Res 52:291–295CrossRefPubMed Gitto E, Aversa S, Salpietro CD, Barberi I, Arrigo T, Trimarchi G, Reiter RJ, Pellegrino S (2012) Pain in neonatal intensive care: role of melatonin as an analgesic antioxidant. J Pineal Res 52:291–295CrossRefPubMed
13.
Zurück zum Zitat Cubero J, Valero V, Sanchez J, Rivero M, Parvez H, Rodriguez AB, Barriga C (2005) The circadian rhythm of tryptophan in breast milk affects the rhythms of 6‑sulfatoxymelatonin and sleep in newborn. Neuro Endocrinol Lett 26:657–661PubMed Cubero J, Valero V, Sanchez J, Rivero M, Parvez H, Rodriguez AB, Barriga C (2005) The circadian rhythm of tryptophan in breast milk affects the rhythms of 6‑sulfatoxymelatonin and sleep in newborn. Neuro Endocrinol Lett 26:657–661PubMed
14.
Zurück zum Zitat Merchant NM, Azzopardi DV, Hawwa AF, McElnay JC, Middleton B, Arendt J, Arichi T, Gressens P, Edwards AD (2013) Pharmacokinetics of melatonin in preterm infants. Brit J Clinical Pharma 76:725–733CrossRef Merchant NM, Azzopardi DV, Hawwa AF, McElnay JC, Middleton B, Arendt J, Arichi T, Gressens P, Edwards AD (2013) Pharmacokinetics of melatonin in preterm infants. Brit J Clinical Pharma 76:725–733CrossRef
15.
Zurück zum Zitat Voiculescu SE, Zygouropoulos N, Zahiu CD, Zagrean AM (2014) Role of melatonin in embryo fetal development. JMedLife 7:488–492 Voiculescu SE, Zygouropoulos N, Zahiu CD, Zagrean AM (2014) Role of melatonin in embryo fetal development. JMedLife 7:488–492
16.
Zurück zum Zitat Joseph D, Chong NW, Shanks ME, Rosato E, Taub NA, Petersen SA, Symonds ME, Whitehouse WP, Wailoo M (2015) Getting rhythm: how do babies do it? Arch Dis Child Fetal Neonatal Ed 100:F50–F54CrossRefPubMed Joseph D, Chong NW, Shanks ME, Rosato E, Taub NA, Petersen SA, Symonds ME, Whitehouse WP, Wailoo M (2015) Getting rhythm: how do babies do it? Arch Dis Child Fetal Neonatal Ed 100:F50–F54CrossRefPubMed
18.
Zurück zum Zitat Aparicio S, Garau C, Esteban S, Nicolau MC, Rivero M, Rial RV (2007) Chrononutrition: use of dissociated day/night infant milk formulas to improve the development of the wake-sleep rhythms. Effects of tryptophan. Nutr Neurosci 10:137–143CrossRefPubMed Aparicio S, Garau C, Esteban S, Nicolau MC, Rivero M, Rial RV (2007) Chrononutrition: use of dissociated day/night infant milk formulas to improve the development of the wake-sleep rhythms. Effects of tryptophan. Nutr Neurosci 10:137–143CrossRefPubMed
19.
Zurück zum Zitat Cubero J, Narciso D, Aparicio S, Garau C, Valero V, Rivero M, Esteban S, Rial R, Rodríguez AB, Barriga C (2006) Improved circadian sleep-wake cycle in infants fed a day/night dissociated formula milk. Neuro Endocrinol Lett 27:373–380PubMed Cubero J, Narciso D, Aparicio S, Garau C, Valero V, Rivero M, Esteban S, Rial R, Rodríguez AB, Barriga C (2006) Improved circadian sleep-wake cycle in infants fed a day/night dissociated formula milk. Neuro Endocrinol Lett 27:373–380PubMed
20.
Zurück zum Zitat Hahn-Holbrook J, Saxbe D, Bixby C, Steele C, Glynn L (2019) Human milk as “chrononutrition”: implications for child health and development. Pediatr Res 85:936–942CrossRefPubMed Hahn-Holbrook J, Saxbe D, Bixby C, Steele C, Glynn L (2019) Human milk as “chrononutrition”: implications for child health and development. Pediatr Res 85:936–942CrossRefPubMed
21.
Zurück zum Zitat White RD (2017) Circadian variation of breast milk components and implications for care. Breastfeed Med 12:398–400CrossRefPubMed White RD (2017) Circadian variation of breast milk components and implications for care. Breastfeed Med 12:398–400CrossRefPubMed
22.
Zurück zum Zitat Cubero J, Narciso D, Terron P, Rial R, Esteban S, Rivero M, Parvez H, Rodriguez AB, Barriga C (2007) Chrononutrition applied to formula milks to consolidate infants’ sleep/wake cycle. Neuro Endocrinol Lett 28:360–366PubMed Cubero J, Narciso D, Terron P, Rial R, Esteban S, Rivero M, Parvez H, Rodriguez AB, Barriga C (2007) Chrononutrition applied to formula milks to consolidate infants’ sleep/wake cycle. Neuro Endocrinol Lett 28:360–366PubMed
23.
Zurück zum Zitat Caba-Flores MD, Ramos-Ligonio A, Camacho-Morales A, Martínez-Valenzuela C, Viveros-Contreras R, Caba M (2022) Breast milk and the importance of chrononutrition. Front Nutr 9:867507CrossRefPubMedPubMedCentral Caba-Flores MD, Ramos-Ligonio A, Camacho-Morales A, Martínez-Valenzuela C, Viveros-Contreras R, Caba M (2022) Breast milk and the importance of chrononutrition. Front Nutr 9:867507CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Aparici-Gonzalo S, Carrasco-García Á, Gombert M, Carrasco-Luna J, Pin-Arboledas G, Codoñer-Franch P (2020) Melatonin content of human milk: the effect of mode of delivery. Breastfeed Med 15:589–594CrossRefPubMed Aparici-Gonzalo S, Carrasco-García Á, Gombert M, Carrasco-Luna J, Pin-Arboledas G, Codoñer-Franch P (2020) Melatonin content of human milk: the effect of mode of delivery. Breastfeed Med 15:589–594CrossRefPubMed
25.
Zurück zum Zitat Qin Y, Shi W, Zhuang J, Liu Y, Tang L, Bu J, Sun J, Bei F (2019) Variations in melatonin levels in preterm and term human breast milk during the first month after delivery. Sci Rep 9:17984CrossRefPubMedPubMedCentral Qin Y, Shi W, Zhuang J, Liu Y, Tang L, Bu J, Sun J, Bei F (2019) Variations in melatonin levels in preterm and term human breast milk during the first month after delivery. Sci Rep 9:17984CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Katzer D, Pauli L, Mueller A, Reutter H, Reinsberg J, Fimmers R, Bartmann P, Bagci S (2016) Melatonin concentrations and antioxidative capacity of human breast milk according to gestational age and the time of day. J Hum Lact 32(Np105):np110 Katzer D, Pauli L, Mueller A, Reutter H, Reinsberg J, Fimmers R, Bartmann P, Bagci S (2016) Melatonin concentrations and antioxidative capacity of human breast milk according to gestational age and the time of day. J Hum Lact 32(Np105):np110
27.
Zurück zum Zitat Sadeh A (1997) Sleep and melatonin in infants: a preliminary study. Sleep 20:185–191PubMed Sadeh A (1997) Sleep and melatonin in infants: a preliminary study. Sleep 20:185–191PubMed
28.
Zurück zum Zitat Carloni S, Proietti F, Rocchi M, Longini M, Marseglia L, D’Angelo G, Balduini W, Gitto E, Buonocore G (2017) Melatonin pharmacokinetics following oral administration in preterm neonates. Molecules 22:2115CrossRefPubMedPubMedCentral Carloni S, Proietti F, Rocchi M, Longini M, Marseglia L, D’Angelo G, Balduini W, Gitto E, Buonocore G (2017) Melatonin pharmacokinetics following oral administration in preterm neonates. Molecules 22:2115CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Andersen LP, Werner MU, Rosenkilde MM, Harpsøe NG, Fuglsang H, Rosenberg J, Gögenur I (2016) Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. Bmc Pharmacol Toxicol 17:8CrossRefPubMedPubMedCentral Andersen LP, Werner MU, Rosenkilde MM, Harpsøe NG, Fuglsang H, Rosenberg J, Gögenur I (2016) Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. Bmc Pharmacol Toxicol 17:8CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Ucuncu Egeli T, Tufekci KU, Ural C, Durur DY, Tuzun Erdogan F, Cavdar Z, Genc S, Keskinoglu P, Duman N, Ozkan H (2023) A new perspective on the pathogenesis of infantile colic: is infantile colic a biorhythm disorder? J Pediatr Gastroenterol Nutr 77:171–177CrossRefPubMed Ucuncu Egeli T, Tufekci KU, Ural C, Durur DY, Tuzun Erdogan F, Cavdar Z, Genc S, Keskinoglu P, Duman N, Ozkan H (2023) A new perspective on the pathogenesis of infantile colic: is infantile colic a biorhythm disorder? J Pediatr Gastroenterol Nutr 77:171–177CrossRefPubMed
31.
Zurück zum Zitat Perrone S, Romeo C, Marseglia L, Manti S, Rizzo C, Carloni S, Albertini MC, Balduini W, Buonocore G, Weiss MD, Gitto E (2023) Melatonin in newborn infants undergoing surgery: a pilot study on its effects on postoperative oxidative stress. Antioxidants 12:563CrossRefPubMedPubMedCentral Perrone S, Romeo C, Marseglia L, Manti S, Rizzo C, Carloni S, Albertini MC, Balduini W, Buonocore G, Weiss MD, Gitto E (2023) Melatonin in newborn infants undergoing surgery: a pilot study on its effects on postoperative oxidative stress. Antioxidants 12:563CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Marseglia L, Manti S, D’Angelo G, Arrigo T, Cuppari C, Salpietro C, Gitto E (2015) Potential use of melatonin in procedural anxiety and pain in children undergoing blood withdrawal. J Biol Regul Homeost Agents 29:509–514PubMed Marseglia L, Manti S, D’Angelo G, Arrigo T, Cuppari C, Salpietro C, Gitto E (2015) Potential use of melatonin in procedural anxiety and pain in children undergoing blood withdrawal. J Biol Regul Homeost Agents 29:509–514PubMed
33.
Zurück zum Zitat Cannavò L, Perrone S, Marseglia L, Viola V, Di Rosa G, Gitto E (2022) Potential benefits of melatonin to control pain in ventilated preterm newborns: An updated review. Pain Pract 22:248–254CrossRefPubMed Cannavò L, Perrone S, Marseglia L, Viola V, Di Rosa G, Gitto E (2022) Potential benefits of melatonin to control pain in ventilated preterm newborns: An updated review. Pain Pract 22:248–254CrossRefPubMed
34.
Zurück zum Zitat Aly H, Elmahdy H, El-Dib M, Rowisha M, Awny M, El-Gohary T, Elbatch M, Hamisa M, El-Mashad AR (2015) Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol 35:186–191CrossRefPubMed Aly H, Elmahdy H, El-Dib M, Rowisha M, Awny M, El-Gohary T, Elbatch M, Hamisa M, El-Mashad AR (2015) Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol 35:186–191CrossRefPubMed
35.
Zurück zum Zitat Ahmad QM, Chishti AL, Waseem N (2018) Role of melatonin in management of hypoxic ischaemic encephalopathy in newborns: a randomized control trial. J Pak Med Assoc 68:1233–1237PubMed Ahmad QM, Chishti AL, Waseem N (2018) Role of melatonin in management of hypoxic ischaemic encephalopathy in newborns: a randomized control trial. J Pak Med Assoc 68:1233–1237PubMed
36.
Zurück zum Zitat Fulia F, Gitto E, Cuzzocrea S, Reiter RJ, Dugo L, Gitto P, Barberi S, Cordaro S, Barberi I (2001) Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res 31:343–349CrossRefPubMed Fulia F, Gitto E, Cuzzocrea S, Reiter RJ, Dugo L, Gitto P, Barberi S, Cordaro S, Barberi I (2001) Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res 31:343–349CrossRefPubMed
37.
Zurück zum Zitat Jerez-Calero A, Salvatierra-Cuenca MT, Benitez-Feliponi Á, Fernández-Marín CE, Narbona-López E, Uberos-Fernández J, Muñoz-Hoyos A (2020) Hypothermia plus melatonin in asphyctic newborns: a randomized-controlled pilot study. Pediatr Crit Care Med 21:647–655CrossRefPubMed Jerez-Calero A, Salvatierra-Cuenca MT, Benitez-Feliponi Á, Fernández-Marín CE, Narbona-López E, Uberos-Fernández J, Muñoz-Hoyos A (2020) Hypothermia plus melatonin in asphyctic newborns: a randomized-controlled pilot study. Pediatr Crit Care Med 21:647–655CrossRefPubMed
38.
Zurück zum Zitat Gharehbaghi MM, Yeganedoust S, Shaseb E, Fekri M (2022) Evaluation of melatonin efficacy in prevention of bronchopulmonary dysplasia in preterm newborn infants. TurkJPediatr 64:79–84CrossRef Gharehbaghi MM, Yeganedoust S, Shaseb E, Fekri M (2022) Evaluation of melatonin efficacy in prevention of bronchopulmonary dysplasia in preterm newborn infants. TurkJPediatr 64:79–84CrossRef
Metadaten
Titel
Melatonin in infants—physiology, pathophysiology and intervention options
verfasst von
Prof. Dr. med. Ekkehart Paditz
Publikationsdatum
24.04.2024
Verlag
Springer Medizin
Erschienen in
Somnologie
Print ISSN: 1432-9123
Elektronische ISSN: 1439-054X
DOI
https://doi.org/10.1007/s11818-024-00456-5

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.