Skip to main content
Erschienen in: Breast Cancer Research 1/2020

Open Access 01.12.2020 | Research article

Nutrient-wide association study of 92 foods and nutrients and breast cancer risk

verfasst von: Alicia K. Heath, David C. Muller, Piet A. van den Brandt, Nikos Papadimitriou, Elena Critselis, Marc Gunter, Paolo Vineis, Elisabete Weiderpass, Guy Fagherazzi, Heiner Boeing, Pietro Ferrari, Anja Olsen, Anne Tjønneland, Patrick Arveux, Marie-Christine Boutron-Ruault, Francesca Romana Mancini, Tilman Kühn, Renée Turzanski-Fortner, Matthias B. Schulze, Anna Karakatsani, Paschalis Thriskos, Antonia Trichopoulou, Giovanna Masala, Paolo Contiero, Fulvio Ricceri, Salvatore Panico, Bas Bueno-de-Mesquita, Marije F. Bakker, Carla H. van Gils, Karina Standahl Olsen, Guri Skeie, Cristina Lasheras, Antonio Agudo, Miguel Rodríguez-Barranco, Maria-José Sánchez, Pilar Amiano, María-Dolores Chirlaque, Aurelio Barricarte, Isabel Drake, Ulrika Ericson, Ingegerd Johansson, Anna Winkvist, Tim Key, Heinz Freisling, Mathilde His, Inge Huybrechts, Sofia Christakoudi, Merete Ellingjord-Dale, Elio Riboli, Konstantinos K. Tsilidis, Ioanna Tzoulaki

Erschienen in: Breast Cancer Research | Ausgabe 1/2020

Abstract

Background

Several dietary factors have been reported to be associated with risk of breast cancer, but to date, unequivocal evidence only exists for alcohol consumption. We sought to systematically assess the association between intake of 92 foods and nutrients and breast cancer risk using a nutrient-wide association study.

Methods

Using data from 272,098 women participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, we assessed dietary intake of 92 foods and nutrients estimated by dietary questionnaires. Cox regression was used to quantify the association between each food/nutrient and risk of breast cancer. A false discovery rate (FDR) of 0.05 was used to select the set of foods and nutrients to be replicated in the independent Netherlands Cohort Study (NLCS).

Results

Six foods and nutrients were identified as associated with risk of breast cancer in the EPIC study (10,979 cases). Higher intake of alcohol overall was associated with a higher risk of breast cancer (hazard ratio (HR) for a 1 SD increment in intake = 1.05, 95% CI 1.03–1.07), as was beer/cider intake and wine intake (HRs per 1 SD increment = 1.05, 95% CI 1.03–1.06 and 1.04, 95% CI 1.02–1.06, respectively), whereas higher intakes of fibre, apple/pear, and carbohydrates were associated with a lower risk of breast cancer (HRs per 1 SD increment = 0.96, 95% CI 0.94–0.98; 0.96, 95% CI 0.94–0.99; and 0.96, 95% CI 0.95–0.98, respectively). When evaluated in the NLCS (2368 cases), estimates for each of these foods and nutrients were similar in magnitude and direction, with the exception of beer/cider intake, which was not associated with risk in the NLCS.

Conclusions

Our findings confirm a positive association of alcohol consumption and suggest an inverse association of dietary fibre and possibly fruit intake with breast cancer risk.
Hinweise
Konstantinos K. Tsilidis and Ioanna Tzoulaki contributed equally to this work.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13058-019-1244-7.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BMI
Body Mass Index
CI
Confidence interval
EPIC
European Prospective Investigation into Cancer and Nutrition
ER
Oestrogen receptor
FDR
False discovery rate
GWAS
Genome-wide association study
HR
Hazard ratio
NLCS
Netherlands Cohort Study
NWAS
Nutrient-wide association study
PR
Progesterone receptor
RR
Relative risk
SD
Standard deviation
WCRF/AICR
World Cancer Research Fund/American Institute for Cancer Research

Background

Dietary factors have been extensively investigated as possible risk factors for breast cancer, but overall evidence for associations is inconsistent and inconclusive [1]. Aside from alcohol intake, for which there is strong evidence of a positive association with breast cancer risk, no convincing dietary risk factors have been identified [1, 2].
Fruits and vegetables are of particular interest due to their rich content of nutrients and phytochemicals, which are thought to have anticarcinogenic effects [3]. However, epidemiological studies assessing intake of fruit and vegetables, as well as of other foods such as meat, dairy, and soy products, have yielded inconsistent results [1, 2, 4, 5]. Dietary fat intake has also been widely investigated as a possible risk factor for breast cancer because it is thought to increase endogenous oestrogen levels [6, 7]; however, there is overall limited evidence for an association [1] and results from prospective studies are conflicting [2, 6]. Based on current evidence, the 2017 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Third Expert Report on diet, nutrition, physical activity, and breast cancer concluded there is suggestive but limited evidence that intake of non-starchy vegetables, carotenoid-containing foods, and diets high in calcium might be associated with a lower risk of breast cancer [1]. It is also possible that associations of foods and nutrients with breast cancer risk might differ by menopausal status [1], hormone receptor status of tumours [8], and molecular subtypes [9]. Due to inconsistencies in the existing literature, the potential role of diet in breast cancer aetiology remains unclear.
We systematically evaluated an extensive list of dietary factors in relation to breast cancer risk using a nutrient-wide association study (NWAS) approach. The NWAS takes an analogous strategy to that of genome-wide association studies (GWAS), separately estimating associations for each food and nutrient measured, and using multiple comparison adjustments to select promising associations for replication in an independent study [10]. This method has been used to investigate dietary risk associations for blood pressure [11], endometrial cancer [12], and epithelial ovarian cancer [13].

Methods

This NWAS involved investigation of intakes of 92 foods and nutrients (for which data were available) in relation to breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, and calculation of the associated False Discovery Rate (FDR) to select dietary factors to evaluate in the independent replication cohort, the Netherlands Cohort Study (NLCS).

Study populations and ascertainment of breast cancer cases

EPIC

The EPIC study includes 521,330 men and women aged 25 to 70 years at recruitment, which occurred between 1992 and 2000 [14]. Participants were from 23 centres in 10 European countries (Denmark, France, Germany, Greece, Italy, Norway, Spain, Sweden, the Netherlands, and the UK) and completed questionnaires on diet, lifestyle, and medical history. Informed consent was provided by all participants, and ethical approval for the study was provided by the internal review board of the International Agency for Research on Cancer and from local ethics committees in each participating country.
Women without a pre-baseline diagnosis of cancer were eligible for inclusion in these analyses; those who did not complete dietary or lifestyle questionnaires or with missing data on relevant confounders were excluded.
Incident breast cancers were identified through population-based cancer registries or active follow-up, and mortality data were obtained from cancer or mortality registries [14]. Breast cancers were classified as ICD-10 code C50. Information on oestrogen receptor (ER) and progesterone receptor (PR) status of the tumours was provided by each centre on the basis of pathology reports; this information was not available for all cases, particularly during the early years of follow-up.

NLCS

The NLCS includes 120,852 participants, of whom 62,573 are women, aged 55 to 69 years when recruited in 1986 from the general population in 204 municipalities in the Netherlands with computerised population registries [15]. At recruitment, participants completed a self-administered questionnaire on dietary habits, lifestyle factors, medical history, family history of cancer, and other risk factors for cancer. The NLCS was approved by the institutional review boards of the Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO) Quality of Life research institute (Zeist, Netherlands) and Maastricht University (Maastricht, Netherlands).
For efficiency, a case-cohort approach was used for questionnaire processing and follow-up. Breast cancer cases were identified from the entire cohort, but accumulated person-years at risk in the entire cohort were estimated from a subcohort of 2589 women who were randomly sampled from the cohort immediately after recruitment. For cases and members of the subcohort, we excluded women with a prevalent cancer other than non-melanoma skin cancer at recruitment, as well as those with incomplete or inconsistent dietary data or missing confounder data.
Incident breast cancer cases were identified by record linkage to the Netherlands Cancer Registry and the Dutch National Pathology Registry.

Dietary assessment

In the EPIC study, the diet of participants was assessed at enrolment using validated country-specific or study centre-specific dietary questionnaires or food records [14, 16, 17]. The EPIC Nutrient Database was used to calculate standardised nutrient intakes for the 10 countries [18]. All foods and nutrients in the centralised EPIC database that were available in most countries (at least eight out of ten countries; 92 dietary factors) were selected for analysis.
Information on dietary intake in the NLCS was collected at recruitment using a 150-item semi-quantitative food frequency questionnaire that estimated the average frequency and amounts of foods and beverages habitually consumed in the previous 12 months. The food frequency questionnaire has been validated and tested for reproducibility [19, 20]. Nutrient intakes were calculated by multiplying the frequency of intake by the nutrient content of specified portions based on the Dutch food composition table [21].

Statistical analysis

Cox regression models with age as the time scale were fitted to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for risk of breast cancer as a function of each food or nutrient. In the EPIC study, age at recruitment was the entry time, and age at cancer diagnosis (except non-melanoma skin cancer), death, emigration, or last follow-up, whichever occurred first, was the exit time. In the NLCS, the total person-years at risk were estimated from the subcohort, and Prentice-weighted Cox proportional hazards models with robust standard error estimates were used to account for the case-cohort design [22]. Intakes of foods and nutrients were adjusted for energy intake using the residual method [23] and standardised (by subtracting the sample mean and dividing by the sample standard deviation (SD)) prior to modelling. HRs were estimated for a one SD increment in intake. All models were stratified by age at recruitment (5-year groups) and study centre (EPIC only) and adjusted by energy intake, history of diabetes (yes/no), educational attainment (none/primary school, technical/professional school, secondary school, longer education), smoking status (never, former, current), body mass index (BMI) (< 20, [20, 23), [23, 25), [25, 30), [30, 35), >= 35 kg/m2), physical activity (EPIC: Cambridge index (inactive, moderately inactive, moderately active, active) [24]; NLCS, non-occupational physical activity (≤ 30, > 30–60, > 60–90, > 90 min/day)), menopausal status at baseline (EPIC only: postmenopausal versus pre- and perimenopausal), menopausal status by BMI interaction (EPIC only), age at menopause (NLCS only), age at menarche, the interaction of parous (yes/no) and age at first pregnancy, and family history of breast cancer in mother or sister/s (NLCS only). Adjustment for factors involving menopausal status was not necessary in the replication analyses in the NLCS since all women in the NLCS were postmenopausal at baseline. We used the Benjamini-Hochberg approach to control the FDR at 0.05 [10]. The set of foods/nutrients satisfying this FDR (variables with q value < 0.05) within EPIC were carried forward for replication in the NLCS.
We performed the NWAS overall, as well as separately by premenopausal/postmenopausal status at baseline. Associations with breast cancer for the identified foods and nutrients in the EPIC study were also assessed by ER and PR expression in tumours for the 60% of EPIC cases and 46% of NLCS cases for whom receptor status data were available.
All analyses were performed in R version 3.6.1.

Results

Of the 343,985 eligible women in the EPIC study without a pre-baseline diagnosis of cancer, we excluded 3343 participants who did not complete dietary or lifestyle questionnaires. A further 68,544 were excluded because they had missing values for relevant covariates, leaving 272,098 women available for analysis. In these women, 10,979 incident invasive breast cancers were identified during a median follow-up time of 15 years. After 20.3 years of follow-up, 3339 incident invasive breast cancer cases were identified in the NLCS. Women with incomplete or inconsistent dietary data (520 cases, 411 subcohort members) and those with missing data on confounders (451 cases and 326 subcohort members) were excluded, leaving 2368 invasive breast cancer cases (including 93 cases who were subcohort members) and 1608 non-case subcohort members in this analysis. Women in the NLCS subcohort were older than women in the EPIC study (mean age 61 years versus 50 years, respectively) (Tables 1 and 2). Among participants in the EPIC study, the distribution of baseline demographic characteristics did not differ substantially between breast cancer cases and non-cases (Table 1).
Table 1
Distribution of baseline demographic characteristics and covariates in the EPIC study
  
Total
Non-case
Case
n
%
n
%
n
%
 
Total
272,098
100
261,119
100
10,979
100
Age at recruitment (years)
[19.9, 40)
33,452
12
32,896
13
556
5
[40, 45)
35,784
13
34,720
13
1064
10
[45, 50)
52,234
19
50,102
19
2132
19
[50, 55)
60,487
22
57,499
22
2988
27
[55, 60)
42,506
16
40,278
15
2228
20
[60, 65)
33,176
12
31,668
12
1508
14
[65, 70)
10,996
4
10,580
4
416
4
[70, 75)
2966
4
2886
1
80
1
[75, 98.5]
497
0
490
0
7
0
Smoking status
Never
158,234
58
152,103
58
6131
56
Former
60,085
22
57,419
22
2666
24
Current
53,779
20
51,597
20
2182
20
Education
None/primary school
82,923
30
79,947
31
2976
27
Technical/professional school
57,553
21
55,074
21
2479
23
Secondary school
66,456
24
63,663
24
2793
25
Longer education (incl. university degree)
65,166
24
62,435
24
2731
25
BMI (kg/m2)
[10.2, 20)
22,799
8
22,007
8
792
7
[20, 23)
79,289
29
76,013
29
3276
30
[23, 25)
55,581
20
53,238
20
2343
21
[25, 30)
78,670
29
75,440
29
3230
29
[30, 35)
26,452
10
25,443
10
1009
9
[35, 77.9]
9307
3
8978
3
329
3
Physical activity
Inactive
60,140
22
57,932
22
2208
20
Moderately inactive
94,409
35
90,456
35
3953
36
Moderately active
75,196
28
72,163
28
3033
28
Active
42,353
16
40,568
16
1785
16
Diabetes
No
265,318
98
254,607
98
10,711
98
Yes
6780
2
6512
2
268
2
Postmenopausal
No
146,620
54
141,379
54
5241
48
Yes
125,478
46
119,740
46
5738
52
Parous
No
42,130
15
40,579
16
1551
14
Yes
229,968
85
220,540
84
9428
86
Table 2
Distribution of baseline demographic characteristics and covariates in the Netherlands Cohort Study
  
Non-case
Case
n
%
n
%
 
Total
1608
100
2368
100
Age at recruitment (years)
[55, 60)
628
39
898
38
[60, 65)
544
34
869
37
[65, 69]
436
27
601
25
Smoking status
Never
927
58
1306
55
Former
339
21
552
23
Current
342
21
510
22
Education
Primary school
516
32
701
30
Lower vocational school
364
23
506
21
Secondary, medium vocational school
573
36
923
39
Higher vocational, university degree
155
10
238
10
BMI (kg/m2)
[14.5, 20)
81
5
77
3
[20, 23)
377
23
511
22
[23, 25)
457
28
633
27
[25, 30)
555
35
931
39
[30, 35)
118
7
181
8
[35, 44.3]
20
1
35
1
Physical activity (non-occupational, min/day)
[0, 30]
358
22
622
26
(30, 60]
521
32
773
33
(60, 90]
378
24
510
22
(90, 415]
351
22
463
20
Diabetes
Yes
57
4
74
3
Parous
Yes
292
18
479
20
Family history of breast cancer (mother/sister(s))
Yes
139
9
348
15
The mean (SD) intakes of the 92 foods and nutrients that were evaluated in the EPIC study are presented in Additional file 1. Of these foods and nutrients, six were associated with risk of breast cancer when controlling the FDR at 0.05 (Fig. 1). Higher intakes of alcohol, beer/cider, and wine were associated with a higher risk of breast cancer (HRs for a 1 SD increment in intake = 1.05, 95% CI 1.03–1.07, 1.05, 95% CI 1.03–1.06, and 1.04, 95% CI 1.02–1.06, respectively), whereas higher fibre, apple/pear, and carbohydrate intakes were associated with a lower risk of breast cancer (HRs per 1 SD increment in intake = 0.96, 95% CI 0.94–0.98; 0.96, 95% CI 0.94–0.99; and 0.96, 95% CI 0.95–0.98, respectively). Model estimates for the 92 dietary factors are provided in Additional file 2. In a model with mutual adjustment for intakes of fibre, apple/pear, and carbohydrates, the associations were slightly weaker: HRs per 1 SD increment in intake were 0.98, 95% CI 0.95–1.00 for fibre; 0.98, 95% CI 0.96–1.00 for apple/pear; and 0.98, 95% CI 0.96–1.00 for carbohydrate).
In separate analyses by menopausal status, alcohol, beer/cider, and wine intakes were associated with a greater risk, and fibre intake was associated with a lower risk of breast cancer among postmenopausal women (N = 5738 cases) but not among premenopausal women (N = 5241 cases) (Fig. 2). We also found intakes of spirits and molluscs (both associated with higher risk) met the FDR threshold among postmenopausal women. None of the other foods or nutrients met the FDR threshold among either postmenopausal or premenopausal women. There were no substantial differences in the magnitude of the associations of alcohol, beer/cider, wine, fibre, apple/pear, and carbohydrates with breast cancer risk by hormone receptor status of tumours, with the possible exception of apple/pear and carbohydrate intake, which may have no association with risk of ER/PR negative tumours (Fig. 3).
In the NLCS, we evaluated the six dietary factors that were identified in the EPIC study overall. The magnitude and direction of the association observed in the NLCS was similar to that in EPIC for each of the factors, with the exception of beer/cider intake, which was not associated with risk of breast cancer in the NLCS (Fig. 4). The NLCS results did not vary appreciably by ER/PR status (data not shown).

Discussion

We used the NWAS approach to evaluate dietary intakes of 92 foods and nutrients in the EPIC study and identified three dietary factors (alcohol, beer/cider, wine) for which higher consumption was associated with higher risk, and three dietary factors (fibre, apple/pear, carbohydrates) for which higher intake was associated with lower risk of breast cancer (FDR < 0.05). The positive association of alcohol, and inverse associations of fibre, apple/pear, and carbohydrate intake with breast cancer risk were confirmed in the NLCS.
In the EPIC study, associations of the identified foods and nutrients with breast cancer risk did not differ substantially by hormone receptor status, but intakes of apple/pear and carbohydrates appeared to have no association with risk of ER/PR-negative tumours. Our analyses stratified by menopausal status showed that results for postmenopausal women alone were very similar to the overall results. No foods or nutrients met the FDR threshold when analysis was restricted to premenopausal women. More research is needed to verify the lack of findings for premenopausal breast cancer and to evaluate underlying mechanisms.
Advantages of this study include its large size and long duration of follow-up, and the NWAS approach which involved a comprehensive assessment of foods and nutrients whilst accounting for multiplicity of tests, and replication of findings in an external cohort. Possible explanations for the lack of consistent associations between dietary factors and breast cancer in epidemiological studies include measurement error arising from the dietary assessment method, and inadequate dietary variation or narrow range of intakes in individual studies. Moreover, associations for dietary factors, if they do exist, may be of a small magnitude for which many studies have had inadequate statistical power to detect. A strength of the EPIC study is the variation in diet. The wide range of dietary intakes of foods and nutrients in this heterogeneous population, a key aspect of the study design [14, 25], and large number of cases provided sufficient statistical power to detect weak to moderate associations. The primary limitation of our study is that it relied on a single assessment of dietary intake during adulthood. In addition, there was no mutual adjustment for other dietary factors (except for the model mutually adjusted for fibre, apple/pear, and carbohydrate intakes), and intercorrelations and overall dietary patterns were not accounted for in these analyses. This was merely an exploratory investigation to identify which dietary factors are associated with breast cancer, so that these factors can subsequently be evaluated in-depth in focused analyses with adjustment for other dietary confounders and to evaluate interrelationships between these foods and nutrients in greater detail. Further, whilst the analogy to GWAS is somewhat appropriate, especially in terms of the approach to statistical analysis, it is far from perfect. The variants typed on a genome-wide array are typically not chosen because of any hypothesised association, but rather to provide adequate coverage of genetic variation in the whole genome. On the other hand, the 92 foods and nutrients in our study were assessed and derived and made available in the EPIC database because of prior plausibility of their association with disease outcomes. Further, the food and nutrient intakes are not independent. Thus, the NWAS approach is more closely aligned to a systematic analysis of candidate genes than it is to the hypothesis-agnostic approach of GWAS.
This study reaffirms the well-established positive association between alcohol intake and breast cancer risk [1, 2628] and, in particular, adds to the strong, convincing evidence that alcohol consumption increases the risk of postmenopausal breast cancer [1, 28, 29]. In the EPIC study there was a positive association between alcohol intake and ER−/PR− and ER+/PR+ breast cancer. The association for ER+/PR− breast cancer was of similar magnitude and in the same direction. In a pooled analysis of 20 prospective cohort studies (as part of the Pooling Project of Prospective Studies of Diet and Cancer), alcohol consumption was positively associated with all three of these subtypes [28]. The positive association between beer/cider intake and breast cancer risk in the EPIC study was not replicated in the NLCS, perhaps due to the low beer consumption of this elderly female Dutch cohort [30]. Overall, there is compelling evidence that alcohol intake increases the risk of breast cancer.
In this NWAS, inverse associations between dietary fibre and carbohydrate intake and breast cancer risk were identified and confirmed in the independent NLCS cohort. The 2017 WCRF/AICR Continuous Update Project report concluded that there is only limited evidence, for which no conclusions can be drawn, for associations of dietary fibre and carbohydrate intake with risk of breast cancer [1]. For fibre intake, findings from epidemiological studies have thus far been inconsistent, but recent meta-analyses have found inverse associations of small magnitude, that did not differ by menopausal status or geographical region [3133].
The inverse association between total dietary fibre intake and breast cancer risk in the EPIC study has been reported previously [34]; however when considering sources of fibre, this association was largely driven by an inverse association with fibre from vegetables, and possibly fruit, but not fibre from cereals or other dietary sources [34]. Dietary fibre intake was inversely associated with breast cancer risk in the Million Women Study in the UK (29,005 breast cancer cases in 691,571 postmenopausal women; relative risk (RR) per 5 g/day higher intake = 0.91, 99% CI 0.87–0.96); the association was evident for intake of fibre from fruit but not from vegetables or cereals [29]. In a meta-analysis of 16 prospective studies including 26,523 breast cancer cases in 999,271 participants, higher total dietary fibre intake was associated with a slightly lower risk of breast cancer (summary RR for high versus low intake = 0.93, 95% CI 0.89–0.98), but when considering source of fibre, the inverse association was apparent for soluble fibre but not for insoluble, vegetable, fruit, or cereal fibre [31]. It has not been established whether fibre from specific food sources is more beneficial than other sources, although it is possible that fibre intake in general is protective, irrespective of the specific food source. Few studies have investigated the association of dietary fibre with breast cancer risk by hormone receptor status, and results have been inconsistent [29, 31, 35, 36]. Similar to a previous analysis in the EPIC study [34], we found little variation in the association of dietary fibre intake with breast cancer risk by hormone receptor status.
The inverse association for apple/pear intake found in the current analysis could be reflecting fibre intake but might not be solely due to the fibre content of these fruits. Indeed, the association was slightly weaker but persisted after adjustment for fibre and carbohydrate intake. We speculate that it is possible that apple/pear intake is indicative of fruit intake in general since these are commonly consumed fruits in Western populations, and thus, their intake may be well captured in dietary questionnaires. In the EPIC study, apples and pears made the greatest contribution to total fruit intake [37]. In a meta-analysis of 10 prospective cohort studies, higher fruit intake was associated with a slightly lower risk of breast cancer (summary RR for highest versus lowest intake = 0.92, 95% CI 0.86–0.98) [38]. Fruit intake was also inversely associated with breast cancer risk in the Million Women Study (RR per 100 g/day higher intake = 0.94, 99% CI 0.92–0.97) [29]. Despite this, we found no strong evidence that total fruit intake was associated with breast cancer risk, which is consistent with previous analyses of EPIC data [37]. The converse scenario is therefore possible: that intake of apples and pears themselves may be associated with risk of breast cancer and that the observed associations for total fruit intake in some studies could be reflecting apple/pear intake. In a pooled analysis of 20 prospective cohort studies, total fruit intake was not associated with breast cancer risk (pooled RR for highest versus lowest quintile = 0.99, 95% CI 0.95–1.03), but intake of apples/pears was inversely associated with risk of ER− breast cancer (pooled RR per serving (138 g)/day = 0.92, 95% CI 0.85–0.99) [8]. In our study, the inverse association of apple/pear intake was most apparent for ER+/PR+ breast cancer. The potential mechanism by which specifically apple/pear intake might be associated with breast cancer risk is unclear.
The inverse association of carbohydrate intake with breast cancer risk in this NWAS could be, at least in part, due to total carbohydrate intake capturing fibre and fruit consumption. Notably, the magnitude of the association for carbohydrates was identical to that for fibre and apple/pear intake. In addition, in the EPIC study, fruit was the second biggest food group source of carbohydrates (contributing 13%) [39]. Nevertheless, after adjusting for intakes of apple/pear and fibre, the association for carbohydrate intake was weaker but did not disappear. Total carbohydrates also comprise other foods including bread (which contributed the highest proportion of carbohydrates in EPIC [39, 40]), grains, cereals, dairy products, legumes, and vegetables, but none of these dietary factors were associated with risk of breast cancer in our study. Total carbohydrate intake is also reflective of overall dietary pattern, which might be more pertinent than individual foods/nutrients for breast cancer risk.
Vegetables have garnered interest due to their rich phytochemical content and have been widely investigated for possible associations with breast cancer. In our study, no individual vegetables nor vegetable groups were associated with risk of breast cancer. Consistent with our results, a meta-analysis of 10 prospective studies [38], and a pooled analysis of 20 cohort studies [8], did not find any association between total vegetable intake and overall breast cancer risk, and likewise, no clear association was found in the Million Women Study [29]. Several studies, including a previous analysis of EPIC data [37], have found an inverse association of total vegetable intake with breast cancer risk, which was most apparent for ER−/PR− tumours [9]. The 2017 WCRF/AICR report concluded that there is suggestive but limited evidence that intake of non-starchy vegetables might decrease the risk of ER− breast cancer [1]. The report also stated there is limited suggestive evidence that consumption of foods (i.e. some fruits and vegetables) containing carotenoids decreases the risk of breast cancer [1]. Given the inconsistencies in the literature regarding the role of fruit and vegetable intake in prevention of breast cancer, no firm conclusions can be drawn at present. Nevertheless, fruits and vegetables contain numerous nutrients, as well as fibre, which might collectively protect against cancer, rather than conferring a protective effect in isolation [3].
Previous analyses in the EPIC study have found a weak association between saturated fat intake and breast cancer risk [41, 42], whereas no associations for total dietary fat intake or subtypes of fat intake were found in the present analysis. The lack of associations using this systematic NWAS approach, and in several other cohort studies [2, 29], suggests that dietary fat is unlikely to play an important role in breast cancer aetiology. However, a limitation of observational studies is that dietary questionnaires are limited in assessing eating out behaviours, and high fat processed foods consumed out of home might not be fully captured.
The fact that few foods and nutrients were found to be associated with breast cancer risk in this study, and other studies [1, 6, 29], could support suggestions that diet in middle-age, or relatively recent diet, might not play an important role in the development of breast cancer [26]. It remains unclear whether diet throughout the life course or potential windows of susceptibility, for example during childhood and adolescence, is associated with breast cancer risk. However, it is worth noting that consistent with the dietary factors identified in this study, fibre intake and apple intake during adolescence and early adulthood were inversely associated with breast cancer risk in the Nurses’ Health Study II [43, 44].
The associations identified in this study are supported by biologically plausible mechanisms. In particular, it is thought that dietary fibre intake may exert a beneficial effect for prevention of breast cancer by decreasing circulating oestrogen levels via inhibition of intestinal reabsorption of oestrogens excreted in bile and concomitant increased faecal excretion of oestrogens [4548]. Alcohol has been shown to increase circulating concentrations of sex steroids, particularly oestrogens [4951], and thus, the effect of alcohol on breast cancer risk is also thought to be at least partially mediated by an effect on endogenous sex hormone levels [27, 50]. Nevertheless, the mechanisms by which alcohol consumption increases breast cancer risk are poorly understood, and other potential pathways include the effect of alcohol on folate absorption [2], acetaldehyde production, oxidative stress, and epigenetic alterations [27].

Conclusions

This study confirms the well-established increased risk of breast cancer associated with alcohol consumption and suggests that higher intake of dietary fibre and possibly fruit might be associated with reduced breast cancer risk.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13058-019-1244-7.

Acknowledgements

The authors thank all participants in the EPIC cohort for their invaluable contribution to the study.

Disclaimer

Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy, or views of the International Agency for Research on Cancer/World Health Organization.
The EPIC study was approved by the ethics committees of the International Agency for Research on Cancer and the individual study centres. The Netherlands Cohort Study was approved by the institutional review boards of the Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO) Quality of Life research institute (Zeist, Netherlands) and Maastricht University (Maastricht, Netherlands). Informed consent was provided by all participants.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat World Cancer Research Fund International/American Institute for Cancer Research. Continuous Update Project Report: Diet, Nutrition, Physical Activity and Breast Cancer. 2017. Available at: wcrf.org/breast-cancer-2017. Accessed 5 Mar 2018. World Cancer Research Fund International/American Institute for Cancer Research. Continuous Update Project Report: Diet, Nutrition, Physical Activity and Breast Cancer. 2017. Available at: wcrf.​org/​breast-cancer-2017. Accessed 5 Mar 2018.
2.
Zurück zum Zitat Mourouti N, Kontogianni MD, Papavagelis C, Panagiotakos DB. Diet and breast cancer: a systematic review. Int J Food Sci Nutr. 2015;66:1–42.PubMedCrossRef Mourouti N, Kontogianni MD, Papavagelis C, Panagiotakos DB. Diet and breast cancer: a systematic review. Int J Food Sci Nutr. 2015;66:1–42.PubMedCrossRef
3.
Zurück zum Zitat Steinmetz KA, Potter JD. Vegetables, fruit, and cancer. II Mechanisms. Cancer Causes Control. 1991;2:427–42.PubMedCrossRef Steinmetz KA, Potter JD. Vegetables, fruit, and cancer. II Mechanisms. Cancer Causes Control. 1991;2:427–42.PubMedCrossRef
4.
Zurück zum Zitat Dong JY, Zhang L, He K, Qin LQ. Dairy consumption and risk of breast cancer: a meta-analysis of prospective cohort studies. Breast Cancer Res Treat. 2011;127:23–31.PubMedCrossRef Dong JY, Zhang L, He K, Qin LQ. Dairy consumption and risk of breast cancer: a meta-analysis of prospective cohort studies. Breast Cancer Res Treat. 2011;127:23–31.PubMedCrossRef
5.
Zurück zum Zitat Missmer SA, Smith-Warner SA, Spiegelman D, Yaun SS, Adami HO, Beeson WL, et al. Meat and dairy food consumption and breast cancer: a pooled analysis of cohort studies. Int J Epidemiol. 2002;31:78–85.PubMedCrossRef Missmer SA, Smith-Warner SA, Spiegelman D, Yaun SS, Adami HO, Beeson WL, et al. Meat and dairy food consumption and breast cancer: a pooled analysis of cohort studies. Int J Epidemiol. 2002;31:78–85.PubMedCrossRef
6.
Zurück zum Zitat Michels KB, Mohllajee AR, Roset-Bahmanyar E, Beehler GP, Moysich KB. Diet and breast cancer: a review of the prospective observational studies. Cancer. 2007;109:2712–49.PubMedCrossRef Michels KB, Mohllajee AR, Roset-Bahmanyar E, Beehler GP, Moysich KB. Diet and breast cancer: a review of the prospective observational studies. Cancer. 2007;109:2712–49.PubMedCrossRef
7.
Zurück zum Zitat Wu AH, Pike MC, Stram DO. Meta-analysis: dietary fat intake, serum estrogen levels, and the risk of breast cancer. J Natl Cancer Inst. 1999;91:529–34.PubMedCrossRef Wu AH, Pike MC, Stram DO. Meta-analysis: dietary fat intake, serum estrogen levels, and the risk of breast cancer. J Natl Cancer Inst. 1999;91:529–34.PubMedCrossRef
8.
Zurück zum Zitat Jung S, Spiegelman D, Baglietto L, Bernstein L, Boggs DA, van den Brandt PA, et al. Fruit and vegetable intake and risk of breast cancer by hormone receptor status. J Natl Cancer Inst. 2013;105:219–36.PubMedPubMedCentralCrossRef Jung S, Spiegelman D, Baglietto L, Bernstein L, Boggs DA, van den Brandt PA, et al. Fruit and vegetable intake and risk of breast cancer by hormone receptor status. J Natl Cancer Inst. 2013;105:219–36.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Farvid MS, Chen WY, Rosner BA, Tamimi RM, Willett WC, Eliassen AH. Fruit and vegetable consumption and breast cancer incidence: repeated measures over 30 years of follow-up. Int J Cancer. 2019;144:1496–510.PubMedCrossRef Farvid MS, Chen WY, Rosner BA, Tamimi RM, Willett WC, Eliassen AH. Fruit and vegetable consumption and breast cancer incidence: repeated measures over 30 years of follow-up. Int J Cancer. 2019;144:1496–510.PubMedCrossRef
10.
Zurück zum Zitat Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol. 1995;57:289–300.
11.
Zurück zum Zitat Tzoulaki I, Patel CJ, Okamura T, Chan Q, Brown IJ, Miura K, et al. A nutrient-wide association study on blood pressure. Circulation. 2012;126:2456–64.PubMedPubMedCentralCrossRef Tzoulaki I, Patel CJ, Okamura T, Chan Q, Brown IJ, Miura K, et al. A nutrient-wide association study on blood pressure. Circulation. 2012;126:2456–64.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Merritt MA, Tzoulaki I, Tworoger SS, De Vivo I, Hankinson SE, Fernandes J, et al. Investigation of dietary factors and endometrial cancer risk using a nutrient-wide association study approach in the EPIC and Nurses’ health study (NHS) and NHSII. Cancer Epidemiol Biomark Prev. 2015;24:466–71.CrossRef Merritt MA, Tzoulaki I, Tworoger SS, De Vivo I, Hankinson SE, Fernandes J, et al. Investigation of dietary factors and endometrial cancer risk using a nutrient-wide association study approach in the EPIC and Nurses’ health study (NHS) and NHSII. Cancer Epidemiol Biomark Prev. 2015;24:466–71.CrossRef
13.
Zurück zum Zitat Merritt MA, Tzoulaki J, van den Brandt PA, Schouten LJ, Tsilidis KK, Weiderpass E, et al. Nutrient-wide association study of 57 foods/nutrients and epithelial ovarian cancer in the European prospective investigation into Cancer and nutrition study and the Netherlands cohort study. Am J Clin Nutr. 2016;103:161–7.PubMedCrossRef Merritt MA, Tzoulaki J, van den Brandt PA, Schouten LJ, Tsilidis KK, Weiderpass E, et al. Nutrient-wide association study of 57 foods/nutrients and epithelial ovarian cancer in the European prospective investigation into Cancer and nutrition study and the Netherlands cohort study. Am J Clin Nutr. 2016;103:161–7.PubMedCrossRef
14.
Zurück zum Zitat Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European prospective investigation into cancer and nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–24.PubMedCrossRef Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European prospective investigation into cancer and nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–24.PubMedCrossRef
15.
Zurück zum Zitat van den Brandt PA, Goldbohm RA, van't Veer P, Volovics A, Hermus RJJ, Sturmans F. A large-scale prospective cohort study on diet and cancer in the Netherlands. J Clin Epidemiol. 1990;43:285–95.PubMedCrossRef van den Brandt PA, Goldbohm RA, van't Veer P, Volovics A, Hermus RJJ, Sturmans F. A large-scale prospective cohort study on diet and cancer in the Netherlands. J Clin Epidemiol. 1990;43:285–95.PubMedCrossRef
16.
Zurück zum Zitat Wirfält E, Mattisson I, Johansson U, Gullberg B, Wallström P, Berglund G. A methodological report from the Malmö diet and Cancer study: development and evaluation of altered routines in dietary data processing. Nutr J. 2002;1:3.PubMedPubMedCentralCrossRef Wirfält E, Mattisson I, Johansson U, Gullberg B, Wallström P, Berglund G. A methodological report from the Malmö diet and Cancer study: development and evaluation of altered routines in dietary data processing. Nutr J. 2002;1:3.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Margetts BM, Pietinen P. European prospective investigation into Cancer and nutrition: validity studies on dietary assessment methods. Int J Epidemiol. 1997;26(Suppl 1):S1–5.PubMedCrossRef Margetts BM, Pietinen P. European prospective investigation into Cancer and nutrition: validity studies on dietary assessment methods. Int J Epidemiol. 1997;26(Suppl 1):S1–5.PubMedCrossRef
18.
Zurück zum Zitat Slimani N, Deharveng G, Unwin I, Southgate DA, Vignat J, Skeie G, et al. The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr. 2007;61:1037–56.PubMedCrossRef Slimani N, Deharveng G, Unwin I, Southgate DA, Vignat J, Skeie G, et al. The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr. 2007;61:1037–56.PubMedCrossRef
19.
Zurück zum Zitat Goldbohm RA, Vandenbrandt PA, Brants HAM, Vantveer P, Al M, Sturmans F, et al. Validation of a dietary questionnaire used in a large-scale prospective cohort study on diet and cancer. Eur J Clin Nutr. 1994;48:253–65.PubMed Goldbohm RA, Vandenbrandt PA, Brants HAM, Vantveer P, Al M, Sturmans F, et al. Validation of a dietary questionnaire used in a large-scale prospective cohort study on diet and cancer. Eur J Clin Nutr. 1994;48:253–65.PubMed
20.
Zurück zum Zitat Goldbohm RA, Vantveer P, Vandenbrandt PA, Vanthof MA, Brants HAM, Sturmans F, et al. Reproducibility of a food frequency questionnaire and stability of dietary habits determined from 5 annually repeated measurements. Eur J Clin Nutr. 1995;49:420–9.PubMed Goldbohm RA, Vantveer P, Vandenbrandt PA, Vanthof MA, Brants HAM, Sturmans F, et al. Reproducibility of a food frequency questionnaire and stability of dietary habits determined from 5 annually repeated measurements. Eur J Clin Nutr. 1995;49:420–9.PubMed
21.
Zurück zum Zitat Voorlichtingsbureau voor de Voeding. NEVO table: Dutch food composition table 1986-1987. The Hague, Netherlands: Voorlichtingsbureau voor de Voeding; 1986. Voorlichtingsbureau voor de Voeding. NEVO table: Dutch food composition table 1986-1987. The Hague, Netherlands: Voorlichtingsbureau voor de Voeding; 1986.
22.
Zurück zum Zitat Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika. 1986;73:1–11.CrossRef Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika. 1986;73:1–11.CrossRef
23.
Zurück zum Zitat Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol. 1986;124:17–27.PubMedCrossRef Willett W, Stampfer MJ. Total energy intake: implications for epidemiologic analyses. Am J Epidemiol. 1986;124:17–27.PubMedCrossRef
24.
Zurück zum Zitat Wareham NJ, Jakes RW, Rennie KL, Schuit J, Mitchell J, Hennings S, et al. Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European prospective investigation into Cancer and nutrition (EPIC) study. Public Health Nutr. 2003;6:407–13.PubMedCrossRef Wareham NJ, Jakes RW, Rennie KL, Schuit J, Mitchell J, Hennings S, et al. Validity and repeatability of a simple index derived from the short physical activity questionnaire used in the European prospective investigation into Cancer and nutrition (EPIC) study. Public Health Nutr. 2003;6:407–13.PubMedCrossRef
25.
Zurück zum Zitat Riboli E, Kaaks R. The EPIC project: rationale and study design. Int J Epidemiol. 1997;26:S6–S14.PubMedCrossRef Riboli E, Kaaks R. The EPIC project: rationale and study design. Int J Epidemiol. 1997;26:S6–S14.PubMedCrossRef
26.
27.
Zurück zum Zitat Seitz HK, Pelucchi C, Bagnardi V, La Vecchia C. Epidemiology and pathophysiology of alcohol and breast cancer: update 2012. Alcohol Alcoholism. 2012;47:204–12.PubMedCrossRef Seitz HK, Pelucchi C, Bagnardi V, La Vecchia C. Epidemiology and pathophysiology of alcohol and breast cancer: update 2012. Alcohol Alcoholism. 2012;47:204–12.PubMedCrossRef
28.
Zurück zum Zitat Jung S, Wang M, Anderson K, Baglietto L, Bergkvist L, Bernstein L, et al. Alcohol consumption and breast cancer risk by estrogen receptor status: in a pooled analysis of 20 studies. Int J Epidemiol. 2016;45:916–28.PubMedCrossRef Jung S, Wang M, Anderson K, Baglietto L, Bergkvist L, Bernstein L, et al. Alcohol consumption and breast cancer risk by estrogen receptor status: in a pooled analysis of 20 studies. Int J Epidemiol. 2016;45:916–28.PubMedCrossRef
29.
Zurück zum Zitat Key TJ, Balkwill A, Bradbury KE, Reeves GK, Kuan AS, Simpson RF, et al. Foods, macronutrients and breast cancer risk in postmenopausal women: a large UK cohort. Int J Epidemiol. 2019;48:489–500.PubMedCrossRef Key TJ, Balkwill A, Bradbury KE, Reeves GK, Kuan AS, Simpson RF, et al. Foods, macronutrients and breast cancer risk in postmenopausal women: a large UK cohort. Int J Epidemiol. 2019;48:489–500.PubMedCrossRef
30.
Zurück zum Zitat van den Brandt PA, Goldbohm RA, van’t Veer P. Alcohol and breast cancer: results from the Netherlands cohort study. Am J Epidemiol 1995;141:907–915. van den Brandt PA, Goldbohm RA, van’t Veer P. Alcohol and breast cancer: results from the Netherlands cohort study. Am J Epidemiol 1995;141:907–915.
31.
Zurück zum Zitat Aune D, Chan DSM, Greenwood DC, Vieira AR, Rosenblatt DAN, Vieira R, et al. Dietary fiber and breast cancer risk: a systematic review and meta-analysis of prospective studies. Ann Oncol. 2012;23:1394–402.PubMedCrossRef Aune D, Chan DSM, Greenwood DC, Vieira AR, Rosenblatt DAN, Vieira R, et al. Dietary fiber and breast cancer risk: a systematic review and meta-analysis of prospective studies. Ann Oncol. 2012;23:1394–402.PubMedCrossRef
32.
Zurück zum Zitat Chen SM, Chen YY, Ma SL, Zheng RZ, Zhao PJ, Zhang LD, et al. Dietary fibre intake and risk of breast cancer: a systematic review and meta-analysis of epidemiological studies. Oncotarget. 2016;7:80980–9.PubMedPubMedCentral Chen SM, Chen YY, Ma SL, Zheng RZ, Zhao PJ, Zhang LD, et al. Dietary fibre intake and risk of breast cancer: a systematic review and meta-analysis of epidemiological studies. Oncotarget. 2016;7:80980–9.PubMedPubMedCentral
33.
Zurück zum Zitat Dong JY, He K, Wang P, Qin LQ. Dietary fiber intake and risk of breast cancer: a meta-analysis of prospective cohort studies. Am J Clin Nutr. 2011;94:900–5.PubMedCrossRef Dong JY, He K, Wang P, Qin LQ. Dietary fiber intake and risk of breast cancer: a meta-analysis of prospective cohort studies. Am J Clin Nutr. 2011;94:900–5.PubMedCrossRef
34.
Zurück zum Zitat Ferrari P, Rinaldi S, Jenab M, Lukanova A, Olsen A, Tjonneland A, et al. Dietary fiber intake and risk of hormonal receptor-defined breast cancer in the European Prospective Investigation into Cancer and Nutrition study. Am J Clin Nutr. 2013;97:344–53.PubMedCrossRef Ferrari P, Rinaldi S, Jenab M, Lukanova A, Olsen A, Tjonneland A, et al. Dietary fiber intake and risk of hormonal receptor-defined breast cancer in the European Prospective Investigation into Cancer and Nutrition study. Am J Clin Nutr. 2013;97:344–53.PubMedCrossRef
35.
Zurück zum Zitat Giles GG, Simpson JA, English DR, Hodge AM, Gertig DM, MacInnis RJ, et al. Dietary carbohydrate, fibre, glycaemic index, glycaemic load and the risk of postmenopausal breast cancer. Int J Cancer. 2006;118:1843–7.PubMedCrossRef Giles GG, Simpson JA, English DR, Hodge AM, Gertig DM, MacInnis RJ, et al. Dietary carbohydrate, fibre, glycaemic index, glycaemic load and the risk of postmenopausal breast cancer. Int J Cancer. 2006;118:1843–7.PubMedCrossRef
36.
Zurück zum Zitat Park Y, Brinton LA, Subar AF, Hollenbeck A, Schatzkin A. Dietary fiber intake and risk of breast cancer in postmenopausal women: the National Institutes of Health-AARP diet and health study. Am J Clin Nutr. 2009;90:664–71.PubMedPubMedCentralCrossRef Park Y, Brinton LA, Subar AF, Hollenbeck A, Schatzkin A. Dietary fiber intake and risk of breast cancer in postmenopausal women: the National Institutes of Health-AARP diet and health study. Am J Clin Nutr. 2009;90:664–71.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Emaus MJ, Peeters PH, Bakker MF, Overvad K, Tjonneland A, Olsen A, et al. Vegetable and fruit consumption and the risk of hormone receptor-defined breast cancer in the EPIC cohort. Am J Clin Nutr. 2016;103:168–77.PubMedCrossRef Emaus MJ, Peeters PH, Bakker MF, Overvad K, Tjonneland A, Olsen A, et al. Vegetable and fruit consumption and the risk of hormone receptor-defined breast cancer in the EPIC cohort. Am J Clin Nutr. 2016;103:168–77.PubMedCrossRef
38.
Zurück zum Zitat Aune D, Chan DS, Vieira AR, Rosenblatt DA, Vieira R, Greenwood DC, et al. Fruits, vegetables and breast cancer risk: a systematic review and meta-analysis of prospective studies. Breast Cancer Res Treat. 2012;134:479–93.PubMedCrossRef Aune D, Chan DS, Vieira AR, Rosenblatt DA, Vieira R, Greenwood DC, et al. Fruits, vegetables and breast cancer risk: a systematic review and meta-analysis of prospective studies. Breast Cancer Res Treat. 2012;134:479–93.PubMedCrossRef
39.
Zurück zum Zitat Wirfält E, McTaggart A, Pala V, Gullberg B, Frasca G, Panico S, et al. Food sources of carbohydrates in a European cohort of adults. Public Health Nutr. 2002;5:1197–215.PubMedCrossRef Wirfält E, McTaggart A, Pala V, Gullberg B, Frasca G, Panico S, et al. Food sources of carbohydrates in a European cohort of adults. Public Health Nutr. 2002;5:1197–215.PubMedCrossRef
40.
Zurück zum Zitat Cust AE, Skilton MR, van Bakel MME, Halkjaer J, Olsen A, Agnoli C, et al. Total dietary carbohydrate, sugar, starch and fibre intakes in the European prospective investigation into Cancer and nutrition. Eur J Clin Nutr. 2009;63:S37–60.PubMedCrossRef Cust AE, Skilton MR, van Bakel MME, Halkjaer J, Olsen A, Agnoli C, et al. Total dietary carbohydrate, sugar, starch and fibre intakes in the European prospective investigation into Cancer and nutrition. Eur J Clin Nutr. 2009;63:S37–60.PubMedCrossRef
41.
Zurück zum Zitat Sieri S, Chiodini P, Agnoli C, Pala V, Berrino F, Trichopoulou A, et al. Dietary fat intake and development of specific breast cancer subtypes. J Natl Cancer Inst. 2014;106:dju068.PubMedCrossRef Sieri S, Chiodini P, Agnoli C, Pala V, Berrino F, Trichopoulou A, et al. Dietary fat intake and development of specific breast cancer subtypes. J Natl Cancer Inst. 2014;106:dju068.PubMedCrossRef
42.
Zurück zum Zitat Sieri S, Krogh V, Ferrari P, Berrino F, Pala V, Thiebaut ACM, et al. Dietary fat and breast cancer risk in the European prospective investigation into Cancer and nutrition. Am J Clin Nutr. 2008;88:1304–12.PubMed Sieri S, Krogh V, Ferrari P, Berrino F, Pala V, Thiebaut ACM, et al. Dietary fat and breast cancer risk in the European prospective investigation into Cancer and nutrition. Am J Clin Nutr. 2008;88:1304–12.PubMed
43.
Zurück zum Zitat Farvid MS, Chen WY, Michels KB, Cho E, Willett WC, Eliassen AH. Fruit and vegetable consumption in adolescence and early adulthood and risk of breast cancer: population based cohort study. BMJ. 2016;353:i2343.PubMedPubMedCentralCrossRef Farvid MS, Chen WY, Michels KB, Cho E, Willett WC, Eliassen AH. Fruit and vegetable consumption in adolescence and early adulthood and risk of breast cancer: population based cohort study. BMJ. 2016;353:i2343.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Farvid MS, Eliassen AH, Cho E, Liao X, Chen WY, Willett WC. Dietary fiber intake in young adults and breast cancer risk. Pediatrics. 2016;137:e20151226.PubMedPubMedCentralCrossRef Farvid MS, Eliassen AH, Cho E, Liao X, Chen WY, Willett WC. Dietary fiber intake in young adults and breast cancer risk. Pediatrics. 2016;137:e20151226.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Gaskins AJ, Mumford SL, Zhang CL, Wactawski-Wende J, Hovey KM, Whitcomb BW, et al. Effect of daily fiber intake on reproductive function: the BioCycle study. Am J Clin Nutr. 2009;90:1061–9.PubMedPubMedCentralCrossRef Gaskins AJ, Mumford SL, Zhang CL, Wactawski-Wende J, Hovey KM, Whitcomb BW, et al. Effect of daily fiber intake on reproductive function: the BioCycle study. Am J Clin Nutr. 2009;90:1061–9.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Goldin BR, Woods MN, Spiegelman DL, Longcope C, Morrilllabrode A, Dwyer JT, et al. The effect of dietary fat and fiber on serum estrogen concentrations in premenopausal women under controlled dietary conditions. Cancer. 1994;74:1125–31.PubMedCrossRef Goldin BR, Woods MN, Spiegelman DL, Longcope C, Morrilllabrode A, Dwyer JT, et al. The effect of dietary fat and fiber on serum estrogen concentrations in premenopausal women under controlled dietary conditions. Cancer. 1994;74:1125–31.PubMedCrossRef
47.
Zurück zum Zitat Rose DP, Goldman M, Connolly JM, Strong LE. High-fiber diet reduces serum estrogen concentrations in premenopausal women. Am J Clin Nutr. 1991;54:520–5.PubMedCrossRef Rose DP, Goldman M, Connolly JM, Strong LE. High-fiber diet reduces serum estrogen concentrations in premenopausal women. Am J Clin Nutr. 1991;54:520–5.PubMedCrossRef
48.
Zurück zum Zitat Gaskins AJ, Mumford SL, Wactawski-Wende J, Schisterman EF. Effect of daily fiber intake on luteinizing hormone levels in reproductive-aged women. Eur J Nutr. 2012;51:249–53.PubMedCrossRef Gaskins AJ, Mumford SL, Wactawski-Wende J, Schisterman EF. Effect of daily fiber intake on luteinizing hormone levels in reproductive-aged women. Eur J Nutr. 2012;51:249–53.PubMedCrossRef
49.
Zurück zum Zitat Maskarinec G, Morimoto Y, Takata Y, Murphy SP, Stanczyk FZ. Alcohol and dietary fibre intakes affect circulating sex hormones among premenopausal women. Public Health Nutr. 2006;9:875–81.PubMedCrossRef Maskarinec G, Morimoto Y, Takata Y, Murphy SP, Stanczyk FZ. Alcohol and dietary fibre intakes affect circulating sex hormones among premenopausal women. Public Health Nutr. 2006;9:875–81.PubMedCrossRef
50.
Zurück zum Zitat Onland-Moret NC, Peeters PHM, van der Schouw YT, Grobbee DE, van Gils CH. Alcohol and endogenous sex steroid levels in postmenopausal women: a cross-sectional study. J Clin Endocr Metab. 2005;90:1414–9.PubMedCrossRef Onland-Moret NC, Peeters PHM, van der Schouw YT, Grobbee DE, van Gils CH. Alcohol and endogenous sex steroid levels in postmenopausal women: a cross-sectional study. J Clin Endocr Metab. 2005;90:1414–9.PubMedCrossRef
51.
Zurück zum Zitat Rinaldi S, Peeters PHM, Bezemer ID, Dossus L, Biessy C, Sacerdote C, et al. Relationship of alcohol intake and sex steroid concentrations in blood in pre- and post-menopausal women: the European prospective investigation into Cancer and nutrition. Cancer Causes Control. 2006;17:1033–43.PubMedCrossRef Rinaldi S, Peeters PHM, Bezemer ID, Dossus L, Biessy C, Sacerdote C, et al. Relationship of alcohol intake and sex steroid concentrations in blood in pre- and post-menopausal women: the European prospective investigation into Cancer and nutrition. Cancer Causes Control. 2006;17:1033–43.PubMedCrossRef
Metadaten
Titel
Nutrient-wide association study of 92 foods and nutrients and breast cancer risk
verfasst von
Alicia K. Heath
David C. Muller
Piet A. van den Brandt
Nikos Papadimitriou
Elena Critselis
Marc Gunter
Paolo Vineis
Elisabete Weiderpass
Guy Fagherazzi
Heiner Boeing
Pietro Ferrari
Anja Olsen
Anne Tjønneland
Patrick Arveux
Marie-Christine Boutron-Ruault
Francesca Romana Mancini
Tilman Kühn
Renée Turzanski-Fortner
Matthias B. Schulze
Anna Karakatsani
Paschalis Thriskos
Antonia Trichopoulou
Giovanna Masala
Paolo Contiero
Fulvio Ricceri
Salvatore Panico
Bas Bueno-de-Mesquita
Marije F. Bakker
Carla H. van Gils
Karina Standahl Olsen
Guri Skeie
Cristina Lasheras
Antonio Agudo
Miguel Rodríguez-Barranco
Maria-José Sánchez
Pilar Amiano
María-Dolores Chirlaque
Aurelio Barricarte
Isabel Drake
Ulrika Ericson
Ingegerd Johansson
Anna Winkvist
Tim Key
Heinz Freisling
Mathilde His
Inge Huybrechts
Sofia Christakoudi
Merete Ellingjord-Dale
Elio Riboli
Konstantinos K. Tsilidis
Ioanna Tzoulaki
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Breast Cancer Research / Ausgabe 1/2020
Elektronische ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-019-1244-7

Weitere Artikel der Ausgabe 1/2020

Breast Cancer Research 1/2020 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.