Skip to main content

19.05.2024 | REVIEW

Periodontopathogen-Related Cell Autophagy—A Double-Edged Sword

verfasst von: Li Ma, Zhengguo Cao

Erschienen in: Inflammation

Einloggen, um Zugang zu erhalten

Abstract

The periodontium is a highly organized ecosystem, and the imbalance between oral microorganisms and host defense leads to periodontal diseases. The periodontal pathogens, mainly Gram-negative anaerobic bacteria, colonize the periodontal niches or enter the blood circulation, resulting in periodontal tissue destruction and distal organ damage. This phenomenon links periodontitis with various systemic conditions, including cardiovascular diseases, malignant tumors, steatohepatitis, and Alzheimer's disease. Autophagy is an evolutionarily conserved cellular self-degradation process essential for eliminating internalized pathogens. Nowadays, increasing studies have been carried out in cells derived from periodontal tissues, immune system, and distant organs to investigate the relationship between periodontal pathogen infection and autophagy-related activities. On one hand, as a vital part of innate and adaptive immunity, autophagy actively participates in host resistance to periodontal bacterial infection. On the other, certain periodontal pathogens exploit autophagic vesicles or pathways to evade immune surveillance, therefore achieving survival within host cells. This review provides an overview of the autophagy process and focuses on periodontopathogen-related autophagy and their involvements in cells of different tissue origins, so as to comprehensively understand the role of autophagy in the occurrence and development of periodontal diseases and various periodontitis-associated systemic illnesses.
Literatur
1.
Zurück zum Zitat Lamont, R.J., H. Koo, and G. Hajishengallis. 2018. The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology 16 (12): 745–759.PubMedPubMedCentralCrossRef Lamont, R.J., H. Koo, and G. Hajishengallis. 2018. The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology 16 (12): 745–759.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Eke, P.I., L. Wei, W.S. Borgnakke, et al. 2016. Periodontitis prevalence in adults >/= 65 years of age, in the USA. Periodontology 2000 72 (1): 76–95.PubMedPubMedCentralCrossRef Eke, P.I., L. Wei, W.S. Borgnakke, et al. 2016. Periodontitis prevalence in adults >/= 65 years of age, in the USA. Periodontology 2000 72 (1): 76–95.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Jiao, J., W. Jing, Y. Si, et al. 2021. The prevalence and severity of periodontal disease in Mainland China: Data from the Fourth National Oral Health Survey (2015–2016). Journal of Clinical Periodontology 48 (2): 168–179.PubMedCrossRef Jiao, J., W. Jing, Y. Si, et al. 2021. The prevalence and severity of periodontal disease in Mainland China: Data from the Fourth National Oral Health Survey (2015–2016). Journal of Clinical Periodontology 48 (2): 168–179.PubMedCrossRef
4.
Zurück zum Zitat Peres, M.A., L.M.D. Macpherson, R.J. Weyant, et al. 2019. Oral diseases: A global public health challenge. Lancet 394 (10194): 249–260.PubMedCrossRef Peres, M.A., L.M.D. Macpherson, R.J. Weyant, et al. 2019. Oral diseases: A global public health challenge. Lancet 394 (10194): 249–260.PubMedCrossRef
5.
Zurück zum Zitat Ramseier, C.A., A. Anerud, M. Dulac, et al. 2017. Natural history of periodontitis: Disease progression and tooth loss over 40 years. Journal of Clinical Periodontology 44 (12): 1182–1191.PubMedCrossRef Ramseier, C.A., A. Anerud, M. Dulac, et al. 2017. Natural history of periodontitis: Disease progression and tooth loss over 40 years. Journal of Clinical Periodontology 44 (12): 1182–1191.PubMedCrossRef
6.
Zurück zum Zitat Socransky, S.S., A.D. Haffajee, M.A. Cugini, et al. 1998. Microbial complexes in subgingival plaque. Journal of Clinical Periodontology 25 (2): 134–144.PubMedCrossRef Socransky, S.S., A.D. Haffajee, M.A. Cugini, et al. 1998. Microbial complexes in subgingival plaque. Journal of Clinical Periodontology 25 (2): 134–144.PubMedCrossRef
7.
Zurück zum Zitat Farrugia, C., G.P. Stafford, J. Potempa, et al. 2021. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS Journal 288 (5): 1479–1495.PubMedCrossRef Farrugia, C., G.P. Stafford, J. Potempa, et al. 2021. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS Journal 288 (5): 1479–1495.PubMedCrossRef
8.
Zurück zum Zitat Blasco-Baque, V., L. Garidou, C. Pomie, et al. 2017. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 66 (5): 872–885.PubMedCrossRef Blasco-Baque, V., L. Garidou, C. Pomie, et al. 2017. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 66 (5): 872–885.PubMedCrossRef
9.
Zurück zum Zitat Dominy, S.S., C. Lynch, F. Ermini, et al. 2019. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances 5 (1): 12.CrossRef Dominy, S.S., C. Lynch, F. Ermini, et al. 2019. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances 5 (1): 12.CrossRef
10.
Zurück zum Zitat Figuero, E., Y.W. Han, and Y. Furuichi. 2020. Periodontal diseases and adverse pregnancy outcomes: Mechanisms. Periodontology 2000 83 (1): 175–188.PubMedCrossRef Figuero, E., Y.W. Han, and Y. Furuichi. 2020. Periodontal diseases and adverse pregnancy outcomes: Mechanisms. Periodontology 2000 83 (1): 175–188.PubMedCrossRef
11.
Zurück zum Zitat Guo, Y., Y. Liu, H. Yang, et al. 2021. Associations of Porphyromonas gingivalis Infection and Low Beclin1 Expression With Clinicopathological Parameters and Survival of Esophageal Squamous Cell Carcinoma Patients. Pathology Oncology Research 27: 1609976.PubMedPubMedCentralCrossRef Guo, Y., Y. Liu, H. Yang, et al. 2021. Associations of Porphyromonas gingivalis Infection and Low Beclin1 Expression With Clinicopathological Parameters and Survival of Esophageal Squamous Cell Carcinoma Patients. Pathology Oncology Research 27: 1609976.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Kim, K.H., and M.S. Lee. 2014. Autophagy–a key player in cellular and body metabolism. Nature Reviews. Endocrinology 10 (6): 322–337.PubMedCrossRef Kim, K.H., and M.S. Lee. 2014. Autophagy–a key player in cellular and body metabolism. Nature Reviews. Endocrinology 10 (6): 322–337.PubMedCrossRef
15.
Zurück zum Zitat Pohl, C., and I. Dikic. 2019. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366 (6467): 818–822.PubMedCrossRef Pohl, C., and I. Dikic. 2019. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science 366 (6467): 818–822.PubMedCrossRef
16.
Zurück zum Zitat Medeiros, T.C., and M. Graef. 2019. Autophagy determines mtDNA copy number dynamics during starvation. Autophagy 15 (1): 178–179.PubMedCrossRef Medeiros, T.C., and M. Graef. 2019. Autophagy determines mtDNA copy number dynamics during starvation. Autophagy 15 (1): 178–179.PubMedCrossRef
17.
Zurück zum Zitat Yang, Z., P. Lin, B. Chen, et al. 2021. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy 17 (10): 3048–3067.PubMedCrossRef Yang, Z., P. Lin, B. Chen, et al. 2021. Autophagy alleviates hypoxia-induced blood-brain barrier injury via regulation of CLDN5 (claudin 5). Autophagy 17 (10): 3048–3067.PubMedCrossRef
18.
Zurück zum Zitat Larabi, A., N. Barnich, and H.T.T. Nguyen. 2020. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 16 (1): 38–51.PubMedCrossRef Larabi, A., N. Barnich, and H.T.T. Nguyen. 2020. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 16 (1): 38–51.PubMedCrossRef
19.
Zurück zum Zitat Liu, Y., and B. Levine. 2015. Autosis and autophagic cell death: The dark side of autophagy. Cell Death and Differentiation 22 (3): 367–376.PubMedCrossRef Liu, Y., and B. Levine. 2015. Autosis and autophagic cell death: The dark side of autophagy. Cell Death and Differentiation 22 (3): 367–376.PubMedCrossRef
20.
Zurück zum Zitat Baxt, L.A., A.C. Garza-Mayers, and M.B. Goldberg. 2013. Bacterial subversion of host innate immune pathways. Science 340 (6133): 697–701.PubMedCrossRef Baxt, L.A., A.C. Garza-Mayers, and M.B. Goldberg. 2013. Bacterial subversion of host innate immune pathways. Science 340 (6133): 697–701.PubMedCrossRef
21.
Zurück zum Zitat Zheng, S., S. Yu, X. Fan, et al. 2021. Porphyromonas gingivalis survival skills: Immune evasion. Journal of Periodontal Research 56 (6): 1007–1018.PubMedCrossRef Zheng, S., S. Yu, X. Fan, et al. 2021. Porphyromonas gingivalis survival skills: Immune evasion. Journal of Periodontal Research 56 (6): 1007–1018.PubMedCrossRef
23.
Zurück zum Zitat Wang, L., D.J. Klionsky, and H.M. Shen. 2023. The emerging mechanisms and functions of microautophagy. Nature Reviews Molecular Cell Biology 24 (3): 186–203.PubMedCrossRef Wang, L., D.J. Klionsky, and H.M. Shen. 2023. The emerging mechanisms and functions of microautophagy. Nature Reviews Molecular Cell Biology 24 (3): 186–203.PubMedCrossRef
24.
Zurück zum Zitat Fleming, A., M. Bourdenx, M. Fujimaki, et al. 2022. The different autophagy degradation pathways and neurodegeneration. Neuron 110 (6): 935–966.PubMedPubMedCentralCrossRef Fleming, A., M. Bourdenx, M. Fujimaki, et al. 2022. The different autophagy degradation pathways and neurodegeneration. Neuron 110 (6): 935–966.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Parzych, K.R., and D.J. Klionsky. 2014. An overview of autophagy: Morphology, mechanism, and regulation. Antioxidants & Redox Signaling 20 (3): 460–473.CrossRef Parzych, K.R., and D.J. Klionsky. 2014. An overview of autophagy: Morphology, mechanism, and regulation. Antioxidants & Redox Signaling 20 (3): 460–473.CrossRef
26.
Zurück zum Zitat Palikaras, K., E. Lionaki, and N. Tavernarakis. 2018. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nature Cell Biology 20 (9): 1013–1022.PubMedCrossRef Palikaras, K., E. Lionaki, and N. Tavernarakis. 2018. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nature Cell Biology 20 (9): 1013–1022.PubMedCrossRef
27.
Zurück zum Zitat Mizushima, N., T. Yoshimori, and Y. Ohsumi. 2011. The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology 27: 107–132.PubMedCrossRef Mizushima, N., T. Yoshimori, and Y. Ohsumi. 2011. The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology 27: 107–132.PubMedCrossRef
28.
Zurück zum Zitat Cadwell, K. 2016. Crosstalk between autophagy and inflammatory signalling pathways: Balancing defence and homeostasis. Nature Reviews Immunology 16 (11): 661–675.PubMedPubMedCentralCrossRef Cadwell, K. 2016. Crosstalk between autophagy and inflammatory signalling pathways: Balancing defence and homeostasis. Nature Reviews Immunology 16 (11): 661–675.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Feng, Y., D. He, Z. Yao, et al. 2014. The machinery of macroautophagy. Cell Research 24 (1): 24–41.PubMedCrossRef Feng, Y., D. He, Z. Yao, et al. 2014. The machinery of macroautophagy. Cell Research 24 (1): 24–41.PubMedCrossRef
30.
Zurück zum Zitat Melia, T.J., A.H. Lystad, and A. Simonsen. 2020. Autophagosome biogenesis: From membrane growth to closure. Journal of Cell Biology 219 (6): e202002085.PubMedPubMedCentralCrossRef Melia, T.J., A.H. Lystad, and A. Simonsen. 2020. Autophagosome biogenesis: From membrane growth to closure. Journal of Cell Biology 219 (6): e202002085.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Seglen, P.O., M. Luhr, I.G. Mills, et al. 2015. Macroautophagic cargo sequestration assays. Methods 75: 25–36.PubMedCrossRef Seglen, P.O., M. Luhr, I.G. Mills, et al. 2015. Macroautophagic cargo sequestration assays. Methods 75: 25–36.PubMedCrossRef
33.
35.
36.
Zurück zum Zitat Klionsky, D.J., E.H. Baehrecke, J.H. Brumell, et al. 2011. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7 (11): 1273–1294.PubMedPubMedCentralCrossRef Klionsky, D.J., E.H. Baehrecke, J.H. Brumell, et al. 2011. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 7 (11): 1273–1294.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Klionsky, D.J., K. Abdelmohsen, A. Abe, et al. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12 (1): 1–222.PubMedPubMedCentralCrossRef Klionsky, D.J., K. Abdelmohsen, A. Abe, et al. 2016. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12 (1): 1–222.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Klionsky, D.J., A.K. Abdel-Aziz, S. Abdelfatah, et al. 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17 (1): 1–382.PubMedPubMedCentralCrossRef Klionsky, D.J., A.K. Abdel-Aziz, S. Abdelfatah, et al. 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17 (1): 1–382.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Greabu, M., F. Giampieri, M.M. Imre, et al. 2020. Autophagy, one of the main steps in periodontitis pathogenesis and evolution. Molecules 25 (18): 4338.PubMedPubMedCentralCrossRef Greabu, M., F. Giampieri, M.M. Imre, et al. 2020. Autophagy, one of the main steps in periodontitis pathogenesis and evolution. Molecules 25 (18): 4338.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Lee, J.S., and O. Yilmaz. 2021. Key elements of gingival epithelial homeostasis upon bacterial interaction. Journal of Dental Research 100 (4): 333–340.PubMedCrossRef Lee, J.S., and O. Yilmaz. 2021. Key elements of gingival epithelial homeostasis upon bacterial interaction. Journal of Dental Research 100 (4): 333–340.PubMedCrossRef
41.
Zurück zum Zitat Chen, W., A. Alshaikh, S. Kim, et al. 2019. Porphyromonas gingivalis Impairs Oral Epithelial Barrier through Targeting GRHL2. Journal of Dental Research 98 (10): 1150–1158.PubMedPubMedCentralCrossRef Chen, W., A. Alshaikh, S. Kim, et al. 2019. Porphyromonas gingivalis Impairs Oral Epithelial Barrier through Targeting GRHL2. Journal of Dental Research 98 (10): 1150–1158.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Abe-Yutori, M., T. Chikazawa, K. Shibasaki, et al. 2017. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. Journal of Periodontal Research 52 (1): 42–50.PubMedCrossRef Abe-Yutori, M., T. Chikazawa, K. Shibasaki, et al. 2017. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. Journal of Periodontal Research 52 (1): 42–50.PubMedCrossRef
43.
Zurück zum Zitat Hagio-Izaki, K., M. Yasunaga, M. Yamaguchi, et al. 2018. Lipopolysaccharide induces bacterial autophagy in epithelial keratinocytes of the gingival sulcus. BMC Cell Biology 19 (1): 18.PubMedPubMedCentralCrossRef Hagio-Izaki, K., M. Yasunaga, M. Yamaguchi, et al. 2018. Lipopolysaccharide induces bacterial autophagy in epithelial keratinocytes of the gingival sulcus. BMC Cell Biology 19 (1): 18.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Yang, X., L. Niu, Y. Pan, et al. 2020. LL-37-induced autophagy contributed to the elimination of live Porphyromonas gingivalis internalized in keratinocytes. Frontiers in Cellular and Infection Microbiology 10: 561761.PubMedPubMedCentralCrossRef Yang, X., L. Niu, Y. Pan, et al. 2020. LL-37-induced autophagy contributed to the elimination of live Porphyromonas gingivalis internalized in keratinocytes. Frontiers in Cellular and Infection Microbiology 10: 561761.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Lee, K., J.S. Roberts, C.H. Choi, et al. 2018. Porphyromonas gingivalis traffics into endoplasmic reticulum-rich-autophagosomes for successful survival in human gingival epithelial cells. Virulence 9 (1): 845–859.PubMedPubMedCentralCrossRef Lee, K., J.S. Roberts, C.H. Choi, et al. 2018. Porphyromonas gingivalis traffics into endoplasmic reticulum-rich-autophagosomes for successful survival in human gingival epithelial cells. Virulence 9 (1): 845–859.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Hu, X., L. Niu, C. Ma, et al. 2020. Calcitriol decreases live Porphyromonas gingivalis internalized into epithelial cells and monocytes by promoting autophagy. Journal of Periodontology 91 (7): 956–966.PubMedCrossRef Hu, X., L. Niu, C. Ma, et al. 2020. Calcitriol decreases live Porphyromonas gingivalis internalized into epithelial cells and monocytes by promoting autophagy. Journal of Periodontology 91 (7): 956–966.PubMedCrossRef
47.
Zurück zum Zitat Liu, M., J. Shao, Y. Zhao, et al. 2023. Porphyromonas gingivalis evades immune clearance by regulating lysosome Efflux. Journal of Dental Research 102 (5): 555–564.PubMedCrossRef Liu, M., J. Shao, Y. Zhao, et al. 2023. Porphyromonas gingivalis evades immune clearance by regulating lysosome Efflux. Journal of Dental Research 102 (5): 555–564.PubMedCrossRef
48.
Zurück zum Zitat Yilmaz, O., P. Verbeke, R.J. Lamont, et al. 2006. Intercellular spreading of Porphyromonas gingivalis infection in primary gingival epithelial cells. Infection and Immunity 74 (1): 703–710.PubMedPubMedCentralCrossRef Yilmaz, O., P. Verbeke, R.J. Lamont, et al. 2006. Intercellular spreading of Porphyromonas gingivalis infection in primary gingival epithelial cells. Infection and Immunity 74 (1): 703–710.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Pollanen, M.T., J.I. Salonen, and V.J. Uitto. 2000. Structure and function of the tooth-epithelial interface in health and disease. Periodontology 2003 (31): 12–31. Pollanen, M.T., J.I. Salonen, and V.J. Uitto. 2000. Structure and function of the tooth-epithelial interface in health and disease. Periodontology 2003 (31): 12–31.
50.
Zurück zum Zitat Tsuda, H., K. Ochiai, N. Suzuki, et al. 2010. Butyrate, a bacterial metabolite, induces apoptosis and autophagic cell death in gingival epithelial cells. Journal of Periodontal Research 45 (5): 626–634.PubMedCrossRef Tsuda, H., K. Ochiai, N. Suzuki, et al. 2010. Butyrate, a bacterial metabolite, induces apoptosis and autophagic cell death in gingival epithelial cells. Journal of Periodontal Research 45 (5): 626–634.PubMedCrossRef
51.
Zurück zum Zitat Evans, M., T. Murofushi, H. Tsuda, et al. 2017. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death. Journal of Periodontal Research 52 (3): 522–531.PubMedCrossRef Evans, M., T. Murofushi, H. Tsuda, et al. 2017. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death. Journal of Periodontal Research 52 (3): 522–531.PubMedCrossRef
52.
Zurück zum Zitat Wang, Y., M. Huang, W. Xu, et al. 2022. Calcitriol-enhanced autophagy in gingival epithelium attenuates periodontal inflammation in rats with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 13: 1051374.PubMedCrossRef Wang, Y., M. Huang, W. Xu, et al. 2022. Calcitriol-enhanced autophagy in gingival epithelium attenuates periodontal inflammation in rats with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 13: 1051374.PubMedCrossRef
53.
Zurück zum Zitat Huang, X., S. Kuang, Z. Shen, et al. 2020. High glucose disrupts autophagy lysosomal pathway in gingival epithelial cells via ATP6V0C. Journal of Periodontology 91 (5): 705–714.PubMedCrossRef Huang, X., S. Kuang, Z. Shen, et al. 2020. High glucose disrupts autophagy lysosomal pathway in gingival epithelial cells via ATP6V0C. Journal of Periodontology 91 (5): 705–714.PubMedCrossRef
54.
Zurück zum Zitat Vicencio, E., E.M. Cordero, B.I. Cortes, et al. 2020. Aggregatibacter actinomycetemcomitans induces autophagy in human junctional epithelium keratinocytes. Cells 9 (5): 1221.PubMedPubMedCentralCrossRef Vicencio, E., E.M. Cordero, B.I. Cortes, et al. 2020. Aggregatibacter actinomycetemcomitans induces autophagy in human junctional epithelium keratinocytes. Cells 9 (5): 1221.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Bugueno, I.M., F. Batool, L. Keller, et al. 2018. Porphyromonas gingivalis bypasses epithelial barrier and modulates fibroblastic inflammatory response in an in vitro 3D spheroid model. Science and Reports 8 (1): 14914.CrossRef Bugueno, I.M., F. Batool, L. Keller, et al. 2018. Porphyromonas gingivalis bypasses epithelial barrier and modulates fibroblastic inflammatory response in an in vitro 3D spheroid model. Science and Reports 8 (1): 14914.CrossRef
56.
Zurück zum Zitat Choi, Y.S., Y.C. Kim, S. Ji, et al. 2014. Increased bacterial invasion and differential expression of tight-junction proteins, growth factors, and growth factor receptors in periodontal lesions. Journal of Periodontology 85 (8): e313–322.PubMed Choi, Y.S., Y.C. Kim, S. Ji, et al. 2014. Increased bacterial invasion and differential expression of tight-junction proteins, growth factors, and growth factor receptors in periodontal lesions. Journal of Periodontology 85 (8): e313–322.PubMed
57.
Zurück zum Zitat An, Y., W. Liu, P. Xue, et al. 2016. Increased autophagy is required to protect periodontal ligament stem cells from apoptosis in inflammatory microenvironment. Journal of Clinical Periodontology 43 (7): 618–625.PubMedCrossRef An, Y., W. Liu, P. Xue, et al. 2016. Increased autophagy is required to protect periodontal ligament stem cells from apoptosis in inflammatory microenvironment. Journal of Clinical Periodontology 43 (7): 618–625.PubMedCrossRef
58.
Zurück zum Zitat Oka, S., X. Li, F. Zhang, et al. 2021. Loss of Dec1 prevents autophagy in inflamed periodontal ligament fibroblast. Molecular Biology Reports 48 (2): 1423–1431.PubMedCrossRef Oka, S., X. Li, F. Zhang, et al. 2021. Loss of Dec1 prevents autophagy in inflamed periodontal ligament fibroblast. Molecular Biology Reports 48 (2): 1423–1431.PubMedCrossRef
59.
Zurück zum Zitat Oka, S., X. Li, F. Sato, et al. 2021. Dec2 attenuates autophagy in inflamed periodontal tissues. Immunity, Inflammation and Disease 9 (1): 265–273.PubMedCrossRef Oka, S., X. Li, F. Sato, et al. 2021. Dec2 attenuates autophagy in inflamed periodontal tissues. Immunity, Inflammation and Disease 9 (1): 265–273.PubMedCrossRef
60.
Zurück zum Zitat Liu, J., X. Wang, F. Xue, et al. 2022. Abnormal mitochondrial structure and function are retained in gingival tissues and human gingival fibroblasts from patients with chronic periodontitis. Journal of Periodontal Research 57 (1): 94–103.PubMedCrossRef Liu, J., X. Wang, F. Xue, et al. 2022. Abnormal mitochondrial structure and function are retained in gingival tissues and human gingival fibroblasts from patients with chronic periodontitis. Journal of Periodontal Research 57 (1): 94–103.PubMedCrossRef
61.
Zurück zum Zitat Xiao, J., X. Huang, H. Wang, et al. 2023. CKIP-1 Promotes P. gingivalis-induced inflammation of periodontal soft tissues by inhibiting autophagy. Inflammation 46 (5): 1997–2010.PubMedCrossRef Xiao, J., X. Huang, H. Wang, et al. 2023. CKIP-1 Promotes P. gingivalis-induced inflammation of periodontal soft tissues by inhibiting autophagy. Inflammation 46 (5): 1997–2010.PubMedCrossRef
62.
Zurück zum Zitat Jiang, K., J. Li, L. Jiang, et al. 2023. PINK1-mediated mitophagy reduced inflammatory responses to Porphyromonas gingivalis in macrophages. Oral Diseases 29 (8): 3665–3676.PubMedCrossRef Jiang, K., J. Li, L. Jiang, et al. 2023. PINK1-mediated mitophagy reduced inflammatory responses to Porphyromonas gingivalis in macrophages. Oral Diseases 29 (8): 3665–3676.PubMedCrossRef
63.
Zurück zum Zitat Liu, J., X. Wang, M. Zheng, et al. 2018. Lipopolysaccharide from Porphyromonas gingivalis promotes autophagy of human gingival fibroblasts through the PI3K/Akt/mTOR signaling pathway. Life Sciences 211: 133–139.PubMedCrossRef Liu, J., X. Wang, M. Zheng, et al. 2018. Lipopolysaccharide from Porphyromonas gingivalis promotes autophagy of human gingival fibroblasts through the PI3K/Akt/mTOR signaling pathway. Life Sciences 211: 133–139.PubMedCrossRef
64.
Zurück zum Zitat Liu, Y., S. Li, S. Zhang, et al. 2017. Lipopolysaccharide of Porphyromonas gingivalis promotes the autophagy of human gingival fibroblasts. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 33 (3): 315–319.PubMed Liu, Y., S. Li, S. Zhang, et al. 2017. Lipopolysaccharide of Porphyromonas gingivalis promotes the autophagy of human gingival fibroblasts. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 33 (3): 315–319.PubMed
65.
Zurück zum Zitat Bullon, P., M.D. Cordero, J.L. Quiles, et al. 2012. Autophagy in periodontitis patients and gingival fibroblasts: Unraveling the link between chronic diseases and inflammation. BMC Medicine 10: 122.PubMedPubMedCentralCrossRef Bullon, P., M.D. Cordero, J.L. Quiles, et al. 2012. Autophagy in periodontitis patients and gingival fibroblasts: Unraveling the link between chronic diseases and inflammation. BMC Medicine 10: 122.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Kim, W.J., S.Y. Park, O.S. Kim, et al. 2021. Autophagy upregulates inflammatory cytokines in gingival tissue of patients with periodontitis and lipopolysaccharide-stimulated human gingival fibroblasts. Journal of Periodontology 93 (3): 380–391.PubMedPubMedCentralCrossRef Kim, W.J., S.Y. Park, O.S. Kim, et al. 2021. Autophagy upregulates inflammatory cytokines in gingival tissue of patients with periodontitis and lipopolysaccharide-stimulated human gingival fibroblasts. Journal of Periodontology 93 (3): 380–391.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Memmert, S., A.V.B. Nogueira, A. Damanaki, et al. 2018. Damage-regulated autophagy modulator 1 in oral inflammation and infection. Clinical Oral Investigations 22 (8): 2933–2941.PubMedCrossRef Memmert, S., A.V.B. Nogueira, A. Damanaki, et al. 2018. Damage-regulated autophagy modulator 1 in oral inflammation and infection. Clinical Oral Investigations 22 (8): 2933–2941.PubMedCrossRef
68.
Zurück zum Zitat Gallorini, M., V. di Giacomo, V. Di Valerio, et al. 2016. Cell-protection mechanism through autophagy in HGFs/S. mitis co-culture treated with Chitlac-nAg. Journal of Materials Science: Materials in Medicine 27 (12): 186.PubMed Gallorini, M., V. di Giacomo, V. Di Valerio, et al. 2016. Cell-protection mechanism through autophagy in HGFs/S. mitis co-culture treated with Chitlac-nAg. Journal of Materials Science: Materials in Medicine 27 (12): 186.PubMed
69.
Zurück zum Zitat Monteith, A.J., J.M. Miller, C.N. Maxwell, et al. 2021. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Science Advances 7 (37): eabj2101.PubMedPubMedCentralCrossRef Monteith, A.J., J.M. Miller, C.N. Maxwell, et al. 2021. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Science Advances 7 (37): eabj2101.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Pidwill, G.R., J.F. Gibson, J. Cole, et al. 2020. The role of macrophages in staphylococcus aureus infection. Frontiers in Immunology 11: 620339.PubMedCrossRef Pidwill, G.R., J.F. Gibson, J. Cole, et al. 2020. The role of macrophages in staphylococcus aureus infection. Frontiers in Immunology 11: 620339.PubMedCrossRef
71.
Zurück zum Zitat Jo, E.K., J.M. Yuk, D.M. Shin, et al. 2013. Roles of autophagy in elimination of intracellular bacterial pathogens. Frontiers in Immunology 4: 97.PubMedPubMedCentralCrossRef Jo, E.K., J.M. Yuk, D.M. Shin, et al. 2013. Roles of autophagy in elimination of intracellular bacterial pathogens. Frontiers in Immunology 4: 97.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Germic, N., Z. Frangez, S. Yousefi, et al. 2019. Regulation of the innate immune system by autophagy: Monocytes, macrophages, dendritic cells and antigen presentation. Cell Death and Differentiation 26 (4): 715–727.PubMedPubMedCentralCrossRef Germic, N., Z. Frangez, S. Yousefi, et al. 2019. Regulation of the innate immune system by autophagy: Monocytes, macrophages, dendritic cells and antigen presentation. Cell Death and Differentiation 26 (4): 715–727.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Zhao, J., W. Geng, K. Wan, et al. 2021. Lipoxin A4 promotes autophagy and inhibits overactivation of macrophage inflammasome activity induced by Pg LPS. Journal of International Medical Research 49 (2): 300060520981259.PubMedCrossRef Zhao, J., W. Geng, K. Wan, et al. 2021. Lipoxin A4 promotes autophagy and inhibits overactivation of macrophage inflammasome activity induced by Pg LPS. Journal of International Medical Research 49 (2): 300060520981259.PubMedCrossRef
74.
Zurück zum Zitat Park, M.H., S.Y. Jeong, H.S. Na, et al. 2017. Porphyromonas gingivalis induces autophagy in THP-1-derived macrophages. Molecular Oral Microbiology 32 (1): 48–59.PubMedCrossRef Park, M.H., S.Y. Jeong, H.S. Na, et al. 2017. Porphyromonas gingivalis induces autophagy in THP-1-derived macrophages. Molecular Oral Microbiology 32 (1): 48–59.PubMedCrossRef
75.
Zurück zum Zitat Lee, H.A., M.H. Park, Y. Song, et al. 2020. Role of Aggregatibacter actinomycetemcomitans-induced autophagy in inflammatory response. Journal of Periodontology 91 (12): 1682–1693.PubMedCrossRef Lee, H.A., M.H. Park, Y. Song, et al. 2020. Role of Aggregatibacter actinomycetemcomitans-induced autophagy in inflammatory response. Journal of Periodontology 91 (12): 1682–1693.PubMedCrossRef
76.
Zurück zum Zitat den Dunnen, J., S.I. Gringhuis, and T.B. Geijtenbeek. 2009. Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunology, Immunotherapy 58 (7): 1149–1157.CrossRef den Dunnen, J., S.I. Gringhuis, and T.B. Geijtenbeek. 2009. Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunology, Immunotherapy 58 (7): 1149–1157.CrossRef
77.
Zurück zum Zitat Zeituni, A.E., R. Jotwani, J. Carrion, et al. 2009. Targeting of DC-SIGN on human dendritic cells by minor fimbriated Porphyromonas gingivalis strains elicits a distinct effector T cell response. Journal of Immunology 183 (9): 5694–5704.CrossRef Zeituni, A.E., R. Jotwani, J. Carrion, et al. 2009. Targeting of DC-SIGN on human dendritic cells by minor fimbriated Porphyromonas gingivalis strains elicits a distinct effector T cell response. Journal of Immunology 183 (9): 5694–5704.CrossRef
78.
Zurück zum Zitat Davey, M., X. Liu, T. Ukai, et al. 2008. Bacterial fimbriae stimulate proinflammatory activation in the endothelium through distinct TLRs. Journal of Immunology 180 (4): 2187–2195.CrossRef Davey, M., X. Liu, T. Ukai, et al. 2008. Bacterial fimbriae stimulate proinflammatory activation in the endothelium through distinct TLRs. Journal of Immunology 180 (4): 2187–2195.CrossRef
79.
Zurück zum Zitat El-Awady, A.R., B. Miles, E. Scisci, et al. 2015. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk. PLoS Pathogens 10 (2): e1004647.PubMedCrossRef El-Awady, A.R., B. Miles, E. Scisci, et al. 2015. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk. PLoS Pathogens 10 (2): e1004647.PubMedCrossRef
80.
Zurück zum Zitat Xie, H.A., S.W. Cai, and R.J. Lamont. 1997. Environmental regulation of fimbrial gene expression in Porphyromonas gingivalis. Infection and Immunity 65 (6): 2265–2271.PubMedPubMedCentralCrossRef Xie, H.A., S.W. Cai, and R.J. Lamont. 1997. Environmental regulation of fimbrial gene expression in Porphyromonas gingivalis. Infection and Immunity 65 (6): 2265–2271.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Meghil, M.M., O.K. Tawfik, M. Elashiry, et al. 2019. Disruption of immune homeostasis in human dendritic cells via regulation of autophagy and apoptosis by Porphyromonas gingivalis. Frontiers in Immunology 10: 2286.PubMedPubMedCentralCrossRef Meghil, M.M., O.K. Tawfik, M. Elashiry, et al. 2019. Disruption of immune homeostasis in human dendritic cells via regulation of autophagy and apoptosis by Porphyromonas gingivalis. Frontiers in Immunology 10: 2286.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Herrera, D., A. Molina, K. Buhlin, et al. 2020. Periodontal diseases and association with atherosclerotic disease. Periodontology 2000 83 (1): 66–89.PubMedCrossRef Herrera, D., A. Molina, K. Buhlin, et al. 2020. Periodontal diseases and association with atherosclerotic disease. Periodontology 2000 83 (1): 66–89.PubMedCrossRef
83.
Zurück zum Zitat Bui, F.Q., C.L.C. Almeida-da-Silva, B. Huynh, et al. 2019. Association between periodontal pathogens and systemic disease. Biomedical Journal 42 (1): 27–35.PubMedPubMedCentralCrossRef Bui, F.Q., C.L.C. Almeida-da-Silva, B. Huynh, et al. 2019. Association between periodontal pathogens and systemic disease. Biomedical Journal 42 (1): 27–35.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Tezal, M., M.A. Sullivan, A. Hyland, et al. 2009. Chronic periodontitis and the incidence of head and neck squamous cell carcinoma. Cancer Epidemiology, Biomarkers & Prevention 18 (9): 2406–2412.CrossRef Tezal, M., M.A. Sullivan, A. Hyland, et al. 2009. Chronic periodontitis and the incidence of head and neck squamous cell carcinoma. Cancer Epidemiology, Biomarkers & Prevention 18 (9): 2406–2412.CrossRef
85.
Zurück zum Zitat Katz, J., M.D. Onate, K.M. Pauley, et al. 2011. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. International Journal of Oral Science 3 (4): 209–215.PubMedPubMedCentralCrossRef Katz, J., M.D. Onate, K.M. Pauley, et al. 2011. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. International Journal of Oral Science 3 (4): 209–215.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Chang, C., F. Geng, X. Shi, et al. 2019. The prevalence rate of periodontal pathogens and its association with oral squamous cell carcinoma. Applied Microbiology and Biotechnology 103 (3): 1393–1404.PubMedCrossRef Chang, C., F. Geng, X. Shi, et al. 2019. The prevalence rate of periodontal pathogens and its association with oral squamous cell carcinoma. Applied Microbiology and Biotechnology 103 (3): 1393–1404.PubMedCrossRef
87.
Zurück zum Zitat Cho, T.J., S.W. Wee, V.H. Woo, et al. 2014. Porphyromonas gingivalis-induced autophagy suppresses cell proliferation through G1 arrest in oral cancer cells. Archives of Oral Biology 59 (4): 370–378.PubMedCrossRef Cho, T.J., S.W. Wee, V.H. Woo, et al. 2014. Porphyromonas gingivalis-induced autophagy suppresses cell proliferation through G1 arrest in oral cancer cells. Archives of Oral Biology 59 (4): 370–378.PubMedCrossRef
88.
Zurück zum Zitat Abed, J., J.E.M. Emgard, G. Zamir, et al. 2016. Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host & Microbe 20 (2): 215–225.CrossRef Abed, J., J.E.M. Emgard, G. Zamir, et al. 2016. Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host & Microbe 20 (2): 215–225.CrossRef
89.
Zurück zum Zitat Chen, Y., Y. Chen, J. Zhang, et al. 2020. Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the upregulation of CARD3 expression. Theranostics 10 (1): 323–339.PubMedPubMedCentralCrossRef Chen, Y., Y. Chen, J. Zhang, et al. 2020. Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the upregulation of CARD3 expression. Theranostics 10 (1): 323–339.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Yu, T.C., F.F. Guo, Y.N. Yu, et al. 2017. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170 (3): 548-563.e16.PubMedPubMedCentralCrossRef Yu, T.C., F.F. Guo, Y.N. Yu, et al. 2017. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170 (3): 548-563.e16.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Liu, Y., Y. Baba, T. Ishimoto, et al. 2021. Fusobacterium nucleatum confers chemoresistance by modulating autophagy in oesophageal squamous cell carcinoma. British Journal of Cancer 124 (5): 963–974.PubMedCrossRef Liu, Y., Y. Baba, T. Ishimoto, et al. 2021. Fusobacterium nucleatum confers chemoresistance by modulating autophagy in oesophageal squamous cell carcinoma. British Journal of Cancer 124 (5): 963–974.PubMedCrossRef
92.
Zurück zum Zitat Tang, B., K. Wang, Y.P. Jia, et al. 2016. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells. PLoS ONE 11 (11): e0165701.PubMedPubMedCentralCrossRef Tang, B., K. Wang, Y.P. Jia, et al. 2016. Fusobacterium nucleatum-Induced Impairment of Autophagic Flux Enhances the Expression of Proinflammatory Cytokines via ROS in Caco-2 Cells. PLoS ONE 11 (11): e0165701.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Duan, C., X. Tang, W. Wang, et al. 2021. Lactobacillus rhamnosus attenuates intestinal inflammation induced by Fusobacterium nucleatum infection by restoring the autophagic flux. International Journal of Molecular Medicine 47 (1): 125–136.PubMedCrossRef Duan, C., X. Tang, W. Wang, et al. 2021. Lactobacillus rhamnosus attenuates intestinal inflammation induced by Fusobacterium nucleatum infection by restoring the autophagic flux. International Journal of Molecular Medicine 47 (1): 125–136.PubMedCrossRef
94.
Zurück zum Zitat Haruki, K., K. Kosumi, T. Hamada, et al. 2020. Association of autophagy status with amount of Fusobacterium nucleatum in colorectal cancer. The Journal of Pathology 250 (4): 397–408.PubMedCrossRef Haruki, K., K. Kosumi, T. Hamada, et al. 2020. Association of autophagy status with amount of Fusobacterium nucleatum in colorectal cancer. The Journal of Pathology 250 (4): 397–408.PubMedCrossRef
95.
Zurück zum Zitat Beukers, N.G., G.J. van der Heijden, A.J. van Wijk, et al. 2017. Periodontitis is an independent risk indicator for atherosclerotic cardiovascular diseases among 60 174 participants in a large dental school in the Netherlands. Journal of Epidemiology and Community Health 71 (1): 37–42.PubMedCrossRef Beukers, N.G., G.J. van der Heijden, A.J. van Wijk, et al. 2017. Periodontitis is an independent risk indicator for atherosclerotic cardiovascular diseases among 60 174 participants in a large dental school in the Netherlands. Journal of Epidemiology and Community Health 71 (1): 37–42.PubMedCrossRef
96.
Zurück zum Zitat Gibson, F.C., III., H. Yumoto, Y. Takahashi, et al. 2006. Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis. Journal of Dental Research 85 (2): 106–121.PubMedCrossRef Gibson, F.C., III., H. Yumoto, Y. Takahashi, et al. 2006. Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis. Journal of Dental Research 85 (2): 106–121.PubMedCrossRef
97.
Zurück zum Zitat Hirasawa, M., and T. Kurita-Ochiai. 2018. Porphyromonas gingivalis Induces Apoptosis and Autophagy via ER Stress in Human Umbilical Vein Endothelial Cells. Mediators of Inflammation 2018: 1967506.PubMedPubMedCentralCrossRef Hirasawa, M., and T. Kurita-Ochiai. 2018. Porphyromonas gingivalis Induces Apoptosis and Autophagy via ER Stress in Human Umbilical Vein Endothelial Cells. Mediators of Inflammation 2018: 1967506.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Durand, E., A. Scoazec, A. Lafont, et al. 2004. In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: A clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109 (21): 2503–2506.PubMedCrossRef Durand, E., A. Scoazec, A. Lafont, et al. 2004. In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: A clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109 (21): 2503–2506.PubMedCrossRef
99.
Zurück zum Zitat Dorn, B.R., W.A. Dunn Jr., and A. Progulske-Fox. 2001. Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infection and Immunity 69 (9): 5698–5708.PubMedPubMedCentralCrossRef Dorn, B.R., W.A. Dunn Jr., and A. Progulske-Fox. 2001. Porphyromonas gingivalis traffics to autophagosomes in human coronary artery endothelial cells. Infection and Immunity 69 (9): 5698–5708.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Belanger, M., P.H. Rodrigues, W.A. Dunn Jr., et al. 2006. Autophagy: A highway for Porphyromonas gingivalis in endothelial cells. Autophagy 2 (3): 165–170.PubMedCrossRef Belanger, M., P.H. Rodrigues, W.A. Dunn Jr., et al. 2006. Autophagy: A highway for Porphyromonas gingivalis in endothelial cells. Autophagy 2 (3): 165–170.PubMedCrossRef
101.
Zurück zum Zitat Palasubramaniam, J., X. Wang, and K. Peter. 2019. Myocardial infarction-from atherosclerosis to thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology 39 (8): e176–e185.PubMedCrossRef Palasubramaniam, J., X. Wang, and K. Peter. 2019. Myocardial infarction-from atherosclerosis to thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology 39 (8): e176–e185.PubMedCrossRef
102.
Zurück zum Zitat Ohki, T., Y. Itabashi, T. Kohno, et al. 2012. Detection of periodontal bacteria in thrombi of patients with acute myocardial infarction by polymerase chain reaction. American Heart Journal 163 (2): 164–167.PubMedCrossRef Ohki, T., Y. Itabashi, T. Kohno, et al. 2012. Detection of periodontal bacteria in thrombi of patients with acute myocardial infarction by polymerase chain reaction. American Heart Journal 163 (2): 164–167.PubMedCrossRef
103.
Zurück zum Zitat Shiheido-Watanabe, Y., Y. Maejima, S. Nakagama, et al. 2023. Porphyromonas gingivalis, a periodontal pathogen, impairs post-infarcted myocardium by inhibiting autophagosome-lysosome fusion. International Journal of Oral Science 15 (1): 42.PubMedPubMedCentralCrossRef Shiheido-Watanabe, Y., Y. Maejima, S. Nakagama, et al. 2023. Porphyromonas gingivalis, a periodontal pathogen, impairs post-infarcted myocardium by inhibiting autophagosome-lysosome fusion. International Journal of Oral Science 15 (1): 42.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Furusho, H., M. Miyauchi, H. Hyogo, et al. 2013. Dental infection of Porphyromonas gingivalis exacerbates high fat diet-induced steatohepatitis in mice. Journal of Gastroenterology 48 (11): 1259–1270.PubMedCrossRef Furusho, H., M. Miyauchi, H. Hyogo, et al. 2013. Dental infection of Porphyromonas gingivalis exacerbates high fat diet-induced steatohepatitis in mice. Journal of Gastroenterology 48 (11): 1259–1270.PubMedCrossRef
105.
Zurück zum Zitat Yoneda, M., S. Naka, K. Nakano, et al. 2012. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. Bmc Gastroenterology 12: 16.PubMedPubMedCentralCrossRef Yoneda, M., S. Naka, K. Nakano, et al. 2012. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. Bmc Gastroenterology 12: 16.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Vidyashankar, S., R.S. Varma, and P.S. Patki. 2013. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells. Toxicology in Vitro 27 (2): 945–953.PubMedCrossRef Vidyashankar, S., R.S. Varma, and P.S. Patki. 2013. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells. Toxicology in Vitro 27 (2): 945–953.PubMedCrossRef
107.
Zurück zum Zitat Zaitsu, Y., M. Iwatake, K. Sato, et al. 2016. Lipid droplets affect elimination of Porphyromonas gingivalis in HepG2 cells by altering the autophagy-lysosome system. Microbes and Infection 18 (9): 565–571.PubMedCrossRef Zaitsu, Y., M. Iwatake, K. Sato, et al. 2016. Lipid droplets affect elimination of Porphyromonas gingivalis in HepG2 cells by altering the autophagy-lysosome system. Microbes and Infection 18 (9): 565–571.PubMedCrossRef
108.
Zurück zum Zitat Karesvuo, P., U.K. Gursoy, P.J. Pussinen, et al. 2013. Alveolar bone loss associated with age-related macular degeneration in males. Journal of Periodontology 84 (1): 58–67.PubMedCrossRef Karesvuo, P., U.K. Gursoy, P.J. Pussinen, et al. 2013. Alveolar bone loss associated with age-related macular degeneration in males. Journal of Periodontology 84 (1): 58–67.PubMedCrossRef
109.
Zurück zum Zitat Arjunan, P., R. Swaminathan, J. Yuan, et al. 2020. Invasion of human retinal pigment epithelial cells by Porphyromonas gingivalis leading to vacuolar/cytosolic localization and autophagy dysfunction in-vitro. Science and Reports 10 (1): 7468.CrossRef Arjunan, P., R. Swaminathan, J. Yuan, et al. 2020. Invasion of human retinal pigment epithelial cells by Porphyromonas gingivalis leading to vacuolar/cytosolic localization and autophagy dysfunction in-vitro. Science and Reports 10 (1): 7468.CrossRef
110.
Zurück zum Zitat He, S., Q. Zhou, B. Luo, et al. 2020. Chloroquine and 3-methyladenine attenuates periodontal inflammation and bone loss in experimental periodontitis. Inflammation 43 (1): 220–230.PubMedCrossRef He, S., Q. Zhou, B. Luo, et al. 2020. Chloroquine and 3-methyladenine attenuates periodontal inflammation and bone loss in experimental periodontitis. Inflammation 43 (1): 220–230.PubMedCrossRef
111.
Zurück zum Zitat Mombelli, A. 2018. Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontology 2000 76 (1): 85–96.PubMedCrossRef Mombelli, A. 2018. Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontology 2000 76 (1): 85–96.PubMedCrossRef
112.
Zurück zum Zitat Silva, M.P., M. Feres, T.A. Sirotto, et al. 2011. Clinical and microbiological benefits of metronidazole alone or with amoxicillin as adjuncts in the treatment of chronic periodontitis: A randomized placebo-controlled clinical trial. Journal of Clinical Periodontology 38 (9): 828–837.PubMedCrossRef Silva, M.P., M. Feres, T.A. Sirotto, et al. 2011. Clinical and microbiological benefits of metronidazole alone or with amoxicillin as adjuncts in the treatment of chronic periodontitis: A randomized placebo-controlled clinical trial. Journal of Clinical Periodontology 38 (9): 828–837.PubMedCrossRef
113.
Zurück zum Zitat Rajendran, M., S. Looney, N. Singh, et al. 2019. Systemic antibiotic therapy reduces circulating inflammatory dendritic cells and Treg-Th17 plasticity in periodontitis. The Journal of Immunology 202 (9): 2690–2699.PubMedCrossRef Rajendran, M., S. Looney, N. Singh, et al. 2019. Systemic antibiotic therapy reduces circulating inflammatory dendritic cells and Treg-Th17 plasticity in periodontitis. The Journal of Immunology 202 (9): 2690–2699.PubMedCrossRef
114.
Zurück zum Zitat Teughels, W., M. Feres, V. Oud, et al. 2020. Adjunctive effect of systemic antimicrobials in periodontitis therapy: A systematic review and meta-analysis. Journal of Clinical Periodontology 47 (Suppl 22): 257–281.PubMedCrossRef Teughels, W., M. Feres, V. Oud, et al. 2020. Adjunctive effect of systemic antimicrobials in periodontitis therapy: A systematic review and meta-analysis. Journal of Clinical Periodontology 47 (Suppl 22): 257–281.PubMedCrossRef
115.
Zurück zum Zitat Feres, M., L.C. Figueiredo, G.M. Soares, et al. 2015. Systemic antibiotics in the treatment of periodontitis. Periodontology 2000 67 (1): 131–186.PubMedCrossRef Feres, M., L.C. Figueiredo, G.M. Soares, et al. 2015. Systemic antibiotics in the treatment of periodontitis. Periodontology 2000 67 (1): 131–186.PubMedCrossRef
Metadaten
Titel
Periodontopathogen-Related Cell Autophagy—A Double-Edged Sword
verfasst von
Li Ma
Zhengguo Cao
Publikationsdatum
19.05.2024
Verlag
Springer US
Erschienen in
Inflammation
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02049-8

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.