Skip to main content
Erschienen in: Inflammation 6/2022

10.06.2022 | Original Article

PTX3 Protects Intestinal Mucosal Barrier Damage in Sepsis Through Toll-Like Receptor Signaling Pathway

verfasst von: Jian Li, Yan Li, Ruifeng Chai, Xiangyou Yu, Zhaoxia Yu

Erschienen in: Inflammation | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

This study aims to confirm the protective effect of Pentraxin 3 (PTX3) on intestinal mucosal barrier damage in sepsis in animal and cell models and explore its mechanism. Analysis of the GSE147775 gene set revealed that the level of PTX3 was upregulated in the lipopolysaccharide (LPS)-induced rat sepsis model. The mice sepsis model was established by cecal ligation perforation (CLP), and the cell inflammation model was induced by LPS. Cell apoptosis and the expression of apoptosis-related protein were detected by flow cytometry and Western blotting. The PTX3 level was significantly upregulated in the mice sepsis model. Intestinal mucosal barrier damage was aggravated and inflammatory factor expression was upregulated after PTX3 downregulation in sepsis mice. After upregulation of PTX3, intestinal mucosal barrier damage was alleviated and inflammatory factor expression was decreased in sepsis mice. Further data mining suggested that the anti-inflammatory effect of PTX3 might be realized through inhibition of the toll-like receptor (TLR) signaling pathway. Moreover, compared with the LPS group, downregulation of PTX3 increased cell apoptosis and the levels of BCL2-associated X (Bax), myeloperoxidase (MPO), tumor necrosis factor-alfa (TNF-α), interleukin 1 beta (IL-1β), and interferon-gamma (IFN-γ), and decreased the levels of B-cell lymphoma-2 (Bcl-2), zona occludens (ZO)-1, and occludin. On the contrary, overexpression of PTX3 reduced cell apoptosis and the levels of Bax, MPO, TNF-α, IL-1β, and IFN-γ. Moreover, downregulation of PTX3 reversed the inhibitive effects on cell apoptosis and inflammation and promotive effects on the levels of Zo-1 and occludin induced by CLI-095 (a TLR signaling pathway inhibitor). In the CLP-induced mice sepsis model and LPS-induced cell inflammation model, PTX3 inhibits inflammatory response and reduces intestinal mucosal barrier damage through the TLR signaling pathway.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Liu, S., J. Xie, B. Zhao, X. Hu, X. Li, B. Zhang, X. Wang, Y. Wang, J. Jiang, W. Yin, and J. Li. 2018. ADAR1 prevents small intestinal injury from inflammation in a murine model of sepsis. Cytokine 104: 30–37.PubMedCrossRef Liu, S., J. Xie, B. Zhao, X. Hu, X. Li, B. Zhang, X. Wang, Y. Wang, J. Jiang, W. Yin, and J. Li. 2018. ADAR1 prevents small intestinal injury from inflammation in a murine model of sepsis. Cytokine 104: 30–37.PubMedCrossRef
2.
Zurück zum Zitat Galley, H.F. 2011. Oxidative stress and mitochondrial dysfunction in sepsis. British Journal of Anaesthesia 107 (1): 57–64.PubMedCrossRef Galley, H.F. 2011. Oxidative stress and mitochondrial dysfunction in sepsis. British Journal of Anaesthesia 107 (1): 57–64.PubMedCrossRef
3.
Zurück zum Zitat Dominguez, J.A., A.J. Samocha, Z. Liang, E.M. Burd, A.B. Farris, and C.M. Coopersmith. 2013. Inhibition of IKKbeta in enterocytes exacerbates sepsis-induced intestinal injury and worsens mortality. Critical Care Medicine 41 (10): e275-285.PubMedCrossRef Dominguez, J.A., A.J. Samocha, Z. Liang, E.M. Burd, A.B. Farris, and C.M. Coopersmith. 2013. Inhibition of IKKbeta in enterocytes exacerbates sepsis-induced intestinal injury and worsens mortality. Critical Care Medicine 41 (10): e275-285.PubMedCrossRef
4.
Zurück zum Zitat Zhu, W., Q. Lu, L. Wan, J. Feng, and H.W. Chen. 2016. Sodium tanshinone II A sulfonate ameliorates microcirculatory disturbance of small intestine by attenuating the production of reactive oxygen species in rats with sepsis. Chinese Journal of Integrative Medicine 22 (10): 745–751.PubMedCrossRef Zhu, W., Q. Lu, L. Wan, J. Feng, and H.W. Chen. 2016. Sodium tanshinone II A sulfonate ameliorates microcirculatory disturbance of small intestine by attenuating the production of reactive oxygen species in rats with sepsis. Chinese Journal of Integrative Medicine 22 (10): 745–751.PubMedCrossRef
5.
Zurück zum Zitat Garlanda, C., B. Bottazzi, A. Bastone, and A. Mantovani. 2005. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annual Review of Immunology 23: 337–366.PubMedCrossRef Garlanda, C., B. Bottazzi, A. Bastone, and A. Mantovani. 2005. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annual Review of Immunology 23: 337–366.PubMedCrossRef
6.
Zurück zum Zitat Lee, T.H., G.W. Lee, E.B. Ziff, and J. Vilcek. 1990. Isolation and characterization of eight tumor necrosis factor-induced gene sequences from human fibroblasts. Molecular and Cellular Biology 10 (5): 1982–1988.PubMedPubMedCentral Lee, T.H., G.W. Lee, E.B. Ziff, and J. Vilcek. 1990. Isolation and characterization of eight tumor necrosis factor-induced gene sequences from human fibroblasts. Molecular and Cellular Biology 10 (5): 1982–1988.PubMedPubMedCentral
7.
Zurück zum Zitat Inforzato, A., C. Baldock, T.A. Jowitt, D.F. Holmes, R. Lindstedt, M. Marcellini, V. Rivieccio, D.C. Briggs, K.E. Kadler, A. Verdoliva, B. Bottazzi, A. Mantovani, G. Salvatori, and A.J. Day. 2010. The angiogenic inhibitor long pentraxin PTX3 forms an asymmetric octamer with two binding sites for FGF2. Journal of Biological Chemistry 285 (23): 17681–17692.PubMedPubMedCentralCrossRef Inforzato, A., C. Baldock, T.A. Jowitt, D.F. Holmes, R. Lindstedt, M. Marcellini, V. Rivieccio, D.C. Briggs, K.E. Kadler, A. Verdoliva, B. Bottazzi, A. Mantovani, G. Salvatori, and A.J. Day. 2010. The angiogenic inhibitor long pentraxin PTX3 forms an asymmetric octamer with two binding sites for FGF2. Journal of Biological Chemistry 285 (23): 17681–17692.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Inforzato, A., V. Rivieccio, A.P. Morreale, A. Bastone, A. Salustri, L. Scarchilli, A. Verdoliva, S. Vincenti, G. Gallo, C. Chiapparino, L. Pacello, E. Nucera, O. Serlupi-Crescenzi, A.J. Day, B. Bottazzi, A. Mantovani, R. De Santis, and G. Salvatori. 2008. Structural characterization of PTX3 disulfide bond network and its multimeric status in cumulus matrix organization. Journal of Biological Chemistry 283 (15): 10147–10161.PubMedCrossRef Inforzato, A., V. Rivieccio, A.P. Morreale, A. Bastone, A. Salustri, L. Scarchilli, A. Verdoliva, S. Vincenti, G. Gallo, C. Chiapparino, L. Pacello, E. Nucera, O. Serlupi-Crescenzi, A.J. Day, B. Bottazzi, A. Mantovani, R. De Santis, and G. Salvatori. 2008. Structural characterization of PTX3 disulfide bond network and its multimeric status in cumulus matrix organization. Journal of Biological Chemistry 283 (15): 10147–10161.PubMedCrossRef
9.
Zurück zum Zitat Kravitz, M.S., M. Pitashny, and Y. Shoenfeld. 2005. Protective molecules–C-reactive protein (CRP), serum amyloid P (SAP), pentraxin3 (PTX3), mannose-binding lectin (MBL), and apolipoprotein A1 (Apo A1), and their autoantibodies: Prevalence and clinical significance in autoimmunity. Journal of Clinical Immunology 25 (6): 582–591.PubMedCrossRef Kravitz, M.S., M. Pitashny, and Y. Shoenfeld. 2005. Protective molecules–C-reactive protein (CRP), serum amyloid P (SAP), pentraxin3 (PTX3), mannose-binding lectin (MBL), and apolipoprotein A1 (Apo A1), and their autoantibodies: Prevalence and clinical significance in autoimmunity. Journal of Clinical Immunology 25 (6): 582–591.PubMedCrossRef
10.
Zurück zum Zitat Jaillon, S., G. Peri, Y. Delneste, I. Fremaux, A. Doni, F. Moalli, C. Garlanda, L. Romani, H. Gascan, S. Bellocchio, S. Bozza, M.A. Cassatella, P. Jeannin, and A. Mantovani. 2007. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. Journal of Experimental Medicine 204 (4): 793–804.PubMedPubMedCentralCrossRef Jaillon, S., G. Peri, Y. Delneste, I. Fremaux, A. Doni, F. Moalli, C. Garlanda, L. Romani, H. Gascan, S. Bellocchio, S. Bozza, M.A. Cassatella, P. Jeannin, and A. Mantovani. 2007. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. Journal of Experimental Medicine 204 (4): 793–804.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Deban, L., S. Jaillon, C. Garlanda, B. Bottazzi, and A. Mantovani. 2011. Pentraxins in innate immunity: Lessons from PTX3. Cell and Tissue Research 343 (1): 237–249.PubMedCrossRef Deban, L., S. Jaillon, C. Garlanda, B. Bottazzi, and A. Mantovani. 2011. Pentraxins in innate immunity: Lessons from PTX3. Cell and Tissue Research 343 (1): 237–249.PubMedCrossRef
12.
Zurück zum Zitat Moalli, F., A. Doni, L. Deban, T. Zelante, S. Zagarella, B. Bottazzi, L. Romani, A. Mantovani, and C. Garlanda. 2010. Role of complement and Fc{gamma} receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood 116 (24): 5170–5180.PubMedCrossRef Moalli, F., A. Doni, L. Deban, T. Zelante, S. Zagarella, B. Bottazzi, L. Romani, A. Mantovani, and C. Garlanda. 2010. Role of complement and Fc{gamma} receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood 116 (24): 5170–5180.PubMedCrossRef
13.
Zurück zum Zitat Daigo, K., M. Nakakido, R. Ohashi, R. Fukuda, K. Matsubara, T. Minami, N. Yamaguchi, K. Inoue, S. Jiang, M. Naito, K. Tsumoto, and T. Hamakubo. 2014. Protective effect of the long pentraxin PTX3 against histone-mediated endothelial cell cytotoxicity in sepsis. Science Signaling 7 (343):ra88 Daigo, K., M. Nakakido, R. Ohashi, R. Fukuda, K. Matsubara, T. Minami, N. Yamaguchi, K. Inoue, S. Jiang, M. Naito, K. Tsumoto, and T. Hamakubo. 2014. Protective effect of the long pentraxin PTX3 against histone-mediated endothelial cell cytotoxicity in sepsis. Science Signaling 7 (343):ra88
14.
Zurück zum Zitat Zhu, H., D. Cui, K. Liu, L. Wang, L. Huang, and J. Li. 2014. Long pentraxin PTX3 attenuates ischemia reperfusion injury in a cardiac transplantation model. Transplant International 27 (1): 87–95.PubMedCrossRef Zhu, H., D. Cui, K. Liu, L. Wang, L. Huang, and J. Li. 2014. Long pentraxin PTX3 attenuates ischemia reperfusion injury in a cardiac transplantation model. Transplant International 27 (1): 87–95.PubMedCrossRef
15.
Zurück zum Zitat Kriegel, A.J., Y. Fang, Y. Liu, Z. Tian, D. Mladinov, I.R. Matus, X. Ding, A.S. Greene, and M. Liang. 2010. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: A novel role of miR-382. Nucleic Acids Research 38 (22): 8338–8347.PubMedPubMedCentralCrossRef Kriegel, A.J., Y. Fang, Y. Liu, Z. Tian, D. Mladinov, I.R. Matus, X. Ding, A.S. Greene, and M. Liang. 2010. MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor beta 1: A novel role of miR-382. Nucleic Acids Research 38 (22): 8338–8347.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Nie, M.W., Y.C. Han, Z.J. Shen, and H.Z. Xie. 2020. Identification of circRNA and mRNA expression profiles and functional networks of vascular tissue in lipopolysaccharide-induced sepsis. Journal of Cellular and Molecular Medicine 24 (14): 7915–7927.PubMedPubMedCentralCrossRef Nie, M.W., Y.C. Han, Z.J. Shen, and H.Z. Xie. 2020. Identification of circRNA and mRNA expression profiles and functional networks of vascular tissue in lipopolysaccharide-induced sepsis. Journal of Cellular and Molecular Medicine 24 (14): 7915–7927.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Walley, K.R., N.W. Lukacs, T.J. Standiford, R.M. Strieter, and S.L. Kunkel. 1996. Balance of inflammatory cytokines related to severity and mortality of murine sepsis. Infection and Immunity 64 (11): 4733–4738.PubMedPubMedCentralCrossRef Walley, K.R., N.W. Lukacs, T.J. Standiford, R.M. Strieter, and S.L. Kunkel. 1996. Balance of inflammatory cytokines related to severity and mortality of murine sepsis. Infection and Immunity 64 (11): 4733–4738.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Steinhauser, M.L., C.M. Hogaboam, S.L. Kunkel, N.W. Lukacs, R.M. Strieter, and T.J. Standiford. 1999. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. The Journal of Immunology 162 (1): 392–399.PubMed Steinhauser, M.L., C.M. Hogaboam, S.L. Kunkel, N.W. Lukacs, R.M. Strieter, and T.J. Standiford. 1999. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. The Journal of Immunology 162 (1): 392–399.PubMed
19.
Zurück zum Zitat Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (4): 402–408.PubMedCrossRef Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (4): 402–408.PubMedCrossRef
20.
Zurück zum Zitat Liu, X., Y. Liang, R. Song, G. Yang, J. Han, Y. Lan, S. Pan, M. Zhu, Y. Liu, Y. Wang, F. Meng, Y. Cui, J. Wang, B. Zhang, X. Song, Z. Lu, T. Zheng, and L. Liu. 2018. Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation. Molecular Cancer 17 (1): 90.PubMedPubMedCentralCrossRef Liu, X., Y. Liang, R. Song, G. Yang, J. Han, Y. Lan, S. Pan, M. Zhu, Y. Liu, Y. Wang, F. Meng, Y. Cui, J. Wang, B. Zhang, X. Song, Z. Lu, T. Zheng, and L. Liu. 2018. Long non-coding RNA NEAT1-modulated abnormal lipolysis via ATGL drives hepatocellular carcinoma proliferation. Molecular Cancer 17 (1): 90.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Liu, J., B. Shi, K. Shi, G. Ma, H. Zhang, X. Lou, H. Liu, S. Wan, and D. Liang. 2017. Ghrelin upregulates PepT1 activity in the small intestine epithelium of rats with sepsis. Biomedicine & Pharmacotherapy 86: 669–676.CrossRef Liu, J., B. Shi, K. Shi, G. Ma, H. Zhang, X. Lou, H. Liu, S. Wan, and D. Liang. 2017. Ghrelin upregulates PepT1 activity in the small intestine epithelium of rats with sepsis. Biomedicine & Pharmacotherapy 86: 669–676.CrossRef
22.
Zurück zum Zitat Coopersmith, C.M., P.E. Stromberg, W.M. Dunne, C.G. Davis, D.M. Amiot 2nd., T.G. Buchman, I.E. Karl, and R.S. Hotchkiss. 2002. Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis. JAMA 287 (13): 1716–1721.PubMedCrossRef Coopersmith, C.M., P.E. Stromberg, W.M. Dunne, C.G. Davis, D.M. Amiot 2nd., T.G. Buchman, I.E. Karl, and R.S. Hotchkiss. 2002. Inhibition of intestinal epithelial apoptosis and survival in a murine model of pneumonia-induced sepsis. JAMA 287 (13): 1716–1721.PubMedCrossRef
23.
Zurück zum Zitat Cavanaugh, J.B., Jr., J.B. Sullivan, N. East, and J.N. Nodzon. 2017. Importance of pharmacy involvement in the treatment of sepsis. Hospital Pharmacy 52 (3): 191–197.PubMedPubMedCentralCrossRef Cavanaugh, J.B., Jr., J.B. Sullivan, N. East, and J.N. Nodzon. 2017. Importance of pharmacy involvement in the treatment of sepsis. Hospital Pharmacy 52 (3): 191–197.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat de Jong, H.K., T. van der Poll, and W.J. Wiersinga. 2010. The systemic pro-inflammatory response in sepsis. Journal of Innate Immunity 2 (5): 422–430.PubMedCrossRef de Jong, H.K., T. van der Poll, and W.J. Wiersinga. 2010. The systemic pro-inflammatory response in sepsis. Journal of Innate Immunity 2 (5): 422–430.PubMedCrossRef
25.
Zurück zum Zitat Ates, I., N. Dogan, M. Aksoy, Z. Halici, C. Gundogdu, and M.S. Keles. 2015. The protective effects of IgM-enriched immunoglobulin and erythropoietin on the lung and small intestine tissues of rats with induced sepsis: Biochemical and histopathological evaluation. Pharmaceutical Biology 53 (1): 78–84.PubMedCrossRef Ates, I., N. Dogan, M. Aksoy, Z. Halici, C. Gundogdu, and M.S. Keles. 2015. The protective effects of IgM-enriched immunoglobulin and erythropoietin on the lung and small intestine tissues of rats with induced sepsis: Biochemical and histopathological evaluation. Pharmaceutical Biology 53 (1): 78–84.PubMedCrossRef
26.
Zurück zum Zitat Erreni, M., A.A. Manfredi, C. Garlanda, A. Mantovani, and P. Rovere-Querini. 2017. The long pentraxin PTX3: A prototypical sensor of tissue injury and a regulator of homeostasis. Immunological Reviews 280 (1): 112–125.PubMedCrossRef Erreni, M., A.A. Manfredi, C. Garlanda, A. Mantovani, and P. Rovere-Querini. 2017. The long pentraxin PTX3: A prototypical sensor of tissue injury and a regulator of homeostasis. Immunological Reviews 280 (1): 112–125.PubMedCrossRef
27.
Zurück zum Zitat Liu, S., D. Zhang, Y. Liu, D. Zhou, H. Yang, and K. Zhang. 2020. Circular RNA circ_0001105 protects the intestinal barrier of septic rats by inhibiting inflammation and oxidative damage and YAP1 expression. Gene 755 (144897): 16. Liu, S., D. Zhang, Y. Liu, D. Zhou, H. Yang, and K. Zhang. 2020. Circular RNA circ_0001105 protects the intestinal barrier of septic rats by inhibiting inflammation and oxidative damage and YAP1 expression. Gene 755 (144897): 16.
28.
Zurück zum Zitat Fay, K.T., M.L. Ford, and C.M. Coopersmith. 2017. The intestinal microenvironment in sepsis. Biochimica et Biophysica Acta, Molecular Basis of Disease 10 (10): 7. Fay, K.T., M.L. Ford, and C.M. Coopersmith. 2017. The intestinal microenvironment in sepsis. Biochimica et Biophysica Acta, Molecular Basis of Disease 10 (10): 7.
29.
Zurück zum Zitat Gupta, D.L., S. Bhoi, T. Mohan, S. Galwnkar, and D.N. Rao. 2016. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with post traumatic sepsis. Cytokine 88: 214–221.PubMedCrossRef Gupta, D.L., S. Bhoi, T. Mohan, S. Galwnkar, and D.N. Rao. 2016. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with post traumatic sepsis. Cytokine 88: 214–221.PubMedCrossRef
30.
Zurück zum Zitat Bischoff, S.C., G. Barbara, W. Buurman, T. Ockhuizen, J.D. Schulzke, M. Serino, H. Tilg, A. Watson, and J.M. Wells. 2014. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterology 14 (189): 014–0189. Bischoff, S.C., G. Barbara, W. Buurman, T. Ockhuizen, J.D. Schulzke, M. Serino, H. Tilg, A. Watson, and J.M. Wells. 2014. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterology 14 (189): 014–0189.
31.
Zurück zum Zitat Liu, H., M. Li, P. Wang, and F. Wang. 2011. Blockade of hypoxia-inducible factor-1α by YC-1 attenuates interferon-γ and tumor necrosis factor-α-induced intestinal epithelial barrier dysfunction. Cytokine 56 (3): 581–588.PubMedCrossRef Liu, H., M. Li, P. Wang, and F. Wang. 2011. Blockade of hypoxia-inducible factor-1α by YC-1 attenuates interferon-γ and tumor necrosis factor-α-induced intestinal epithelial barrier dysfunction. Cytokine 56 (3): 581–588.PubMedCrossRef
32.
Zurück zum Zitat Fang, W., P. Zhao, A. Shen, L. Liu, H. Chen, Y. Chen, J. Peng, T.J. Sferra, S. Sankararaman, Y. Luo, and X. Ke. 2021. Effects of Qing Hua Chang Yin on lipopolysaccharide-induced intestinal epithelial tight junction injury in Caco-2 cells. Molecular Medicine Reports 23 (3): 26.CrossRef Fang, W., P. Zhao, A. Shen, L. Liu, H. Chen, Y. Chen, J. Peng, T.J. Sferra, S. Sankararaman, Y. Luo, and X. Ke. 2021. Effects of Qing Hua Chang Yin on lipopolysaccharide-induced intestinal epithelial tight junction injury in Caco-2 cells. Molecular Medicine Reports 23 (3): 26.CrossRef
33.
Zurück zum Zitat Yoseph, B.P., N.J. Klingensmith, Z. Liang, E.R. Breed, E.M. Burd, R. Mittal, J.A. Dominguez, B. Petrie, M.L. Ford, and C.M. Coopersmith. 2016. Mechanisms of intestinal barrier dysfunction in sepsis. Shock 46 (1): 52–59.PubMedPubMedCentralCrossRef Yoseph, B.P., N.J. Klingensmith, Z. Liang, E.R. Breed, E.M. Burd, R. Mittal, J.A. Dominguez, B. Petrie, M.L. Ford, and C.M. Coopersmith. 2016. Mechanisms of intestinal barrier dysfunction in sepsis. Shock 46 (1): 52–59.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Gill, S.E., M. Rohan, and S. Mehta. 2015. Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo. Respiratory Research 16 (1): 015–0266.CrossRef Gill, S.E., M. Rohan, and S. Mehta. 2015. Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo. Respiratory Research 16 (1): 015–0266.CrossRef
35.
Zurück zum Zitat Luan, Y.Y., Y.M. Yao, X.Z. Xiao, and Z.Y. Sheng. 2015. Insights into the apoptotic death of immune cells in sepsis. Journal of Interferon and Cytokine Research 35 (1): 17–22.PubMedPubMedCentralCrossRef Luan, Y.Y., Y.M. Yao, X.Z. Xiao, and Z.Y. Sheng. 2015. Insights into the apoptotic death of immune cells in sepsis. Journal of Interferon and Cytokine Research 35 (1): 17–22.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Delano, M.J., and P.A. Ward. 2016. Sepsis-induced immune dysfunction: Can immune therapies reduce mortality? The Journal of Clinical Investigation 126 (1): 23–31.PubMedPubMedCentralCrossRef Delano, M.J., and P.A. Ward. 2016. Sepsis-induced immune dysfunction: Can immune therapies reduce mortality? The Journal of Clinical Investigation 126 (1): 23–31.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Liu, H., Z. Liu, S. Zhao, C. Sun, and M. Yang. 2015. Effect of BML-111 on the intestinal mucosal barrier in sepsis and its mechanism of action. Molecular Medicine Reports 12 (2): 3101–3106.PubMedCrossRef Liu, H., Z. Liu, S. Zhao, C. Sun, and M. Yang. 2015. Effect of BML-111 on the intestinal mucosal barrier in sepsis and its mechanism of action. Molecular Medicine Reports 12 (2): 3101–3106.PubMedCrossRef
38.
Zurück zum Zitat Cao, M., P. Wang, C. Sun, W. He, and F. Wang. 2013. Amelioration of IFN-γ and TNF-α-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. PLoS One 8 (5) Cao, M., P. Wang, C. Sun, W. He, and F. Wang. 2013. Amelioration of IFN-γ and TNF-α-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway. PLoS One 8 (5)
39.
Zurück zum Zitat Paunel-Görgülü, A., S. Flohé, M. Scholz, J. Windolf, and T. Lögters. 2011. Increased serum soluble Fas after major trauma is associated with delayed neutrophil apoptosis and development of sepsis. Critical Care 15 (1): 13.CrossRef Paunel-Görgülü, A., S. Flohé, M. Scholz, J. Windolf, and T. Lögters. 2011. Increased serum soluble Fas after major trauma is associated with delayed neutrophil apoptosis and development of sepsis. Critical Care 15 (1): 13.CrossRef
40.
Zurück zum Zitat Yu, H., Y. Liu, M. Wang, R.J. Restrepo, D. Wang, T.J. Kalogeris, W.L. Neumann, D.A. Ford, and R.J. Korthuis. 2020. Myeloperoxidase instigates proinflammatory responses in a cecal ligation and puncture rat model of sepsis. American Journal of Physiology. Heart and Circulatory Physiology 319 (3): H705–H721.PubMedPubMedCentralCrossRef Yu, H., Y. Liu, M. Wang, R.J. Restrepo, D. Wang, T.J. Kalogeris, W.L. Neumann, D.A. Ford, and R.J. Korthuis. 2020. Myeloperoxidase instigates proinflammatory responses in a cecal ligation and puncture rat model of sepsis. American Journal of Physiology. Heart and Circulatory Physiology 319 (3): H705–H721.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Hashimoto, C., K.L. Hudson, and K.V. Anderson. 1988. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52 (2): 269–279.PubMedCrossRef Hashimoto, C., K.L. Hudson, and K.V. Anderson. 1988. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52 (2): 269–279.PubMedCrossRef
42.
Zurück zum Zitat Lind, N.A., V.E. Rael, K. Pestal, B. Liu, and G.M. Barton. 2021. Regulation of the nucleic acid-sensing Toll-like receptors. Nature Reviews Immunology. Lind, N.A., V.E. Rael, K. Pestal, B. Liu, and G.M. Barton. 2021. Regulation of the nucleic acid-sensing Toll-like receptors. Nature Reviews Immunology.
43.
44.
Zurück zum Zitat Hu, Y., H. Yang, X. Ding, L. Tao, M. Liu, and C. Zhang. 2021. A sesquiterpenoid from Ligularia pleurocaulis modulated macrophages polarisation through TLR4 pathway. Natural Product Research 35 (22): 4853–4856.PubMedCrossRef Hu, Y., H. Yang, X. Ding, L. Tao, M. Liu, and C. Zhang. 2021. A sesquiterpenoid from Ligularia pleurocaulis modulated macrophages polarisation through TLR4 pathway. Natural Product Research 35 (22): 4853–4856.PubMedCrossRef
45.
Zurück zum Zitat Hu, Y., J. Ren, L. Wang, X. Zhao, M. Zhang, K. Shimizu, and C. Zhang. 2018. Protective effects of total alkaloids from Dendrobium crepidatum against LPS-induced acute lung injury in mice and its chemical components. Phytochemistry 149: 12–23.PubMedCrossRef Hu, Y., J. Ren, L. Wang, X. Zhao, M. Zhang, K. Shimizu, and C. Zhang. 2018. Protective effects of total alkaloids from Dendrobium crepidatum against LPS-induced acute lung injury in mice and its chemical components. Phytochemistry 149: 12–23.PubMedCrossRef
46.
Zurück zum Zitat Ju, M., B. Liu, H. He, Z. Gu, Y. Liu, Y. Su, D. Zhu, J. Cang, and Z. Luo. 2018. MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting in fl ammation and apoptosis through modulating TLR4/MyD88/NF-kappaB pathway. Cell Cycle 17 (16): 2001–2018.PubMedPubMedCentralCrossRef Ju, M., B. Liu, H. He, Z. Gu, Y. Liu, Y. Su, D. Zhu, J. Cang, and Z. Luo. 2018. MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting in fl ammation and apoptosis through modulating TLR4/MyD88/NF-kappaB pathway. Cell Cycle 17 (16): 2001–2018.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Liu, T.Y., L.L. Zhao, S.B. Chen, B.C. Hou, J. Huang, X. Hong, L. Qing, Y. Fang, and Z. Tao. 2020. Polygonatum sibiricum polysaccharides prevent LPS-induced acute lung injury by inhibiting inflammation via the TLR4/Myd88/NF-kappaB pathway. Experimental and Therapeutic Medicine 20 (4): 3733–3739.PubMedPubMedCentral Liu, T.Y., L.L. Zhao, S.B. Chen, B.C. Hou, J. Huang, X. Hong, L. Qing, Y. Fang, and Z. Tao. 2020. Polygonatum sibiricum polysaccharides prevent LPS-induced acute lung injury by inhibiting inflammation via the TLR4/Myd88/NF-kappaB pathway. Experimental and Therapeutic Medicine 20 (4): 3733–3739.PubMedPubMedCentral
48.
Zurück zum Zitat Saikh, K.U. 2021. MyD88 and beyond: A perspective on MyD88-targeted therapeutic approach for modulation of host immunity. Immunologic Research 69 (2): 117–128.PubMedPubMedCentralCrossRef Saikh, K.U. 2021. MyD88 and beyond: A perspective on MyD88-targeted therapeutic approach for modulation of host immunity. Immunologic Research 69 (2): 117–128.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Xia, M., Q. Zhao, H. Zhang, Y. Chen, Z. Yuan, Y. Xu, and M. Zhang. 2017. Proteomic analysis of HDAC3 selective inhibitor in the regulation of inflammatory response of primary microglia. Neural Plasticity 6237351 (10): 15. Xia, M., Q. Zhao, H. Zhang, Y. Chen, Z. Yuan, Y. Xu, and M. Zhang. 2017. Proteomic analysis of HDAC3 selective inhibitor in the regulation of inflammatory response of primary microglia. Neural Plasticity 6237351 (10): 15.
50.
Zurück zum Zitat Shayegan, A., A. Zucchi, K. De Swert, B. Balau, C. Truyens, and C. Nicaise. 2021. Lipoteichoic acid stimulates the proliferation, migration and cytokine production of adult dental pulp stem cells without affecting osteogenic differentiation. International Endodontic Journal 54 (4): 585–600.PubMedCrossRef Shayegan, A., A. Zucchi, K. De Swert, B. Balau, C. Truyens, and C. Nicaise. 2021. Lipoteichoic acid stimulates the proliferation, migration and cytokine production of adult dental pulp stem cells without affecting osteogenic differentiation. International Endodontic Journal 54 (4): 585–600.PubMedCrossRef
51.
Zurück zum Zitat Zannetti, C., F. Bonnay, F. Takeshita, P. Parroche, C. Ménétrier-Caux, M. Tommasino, and U.A. Hasan. 2010. C/EBP{delta} and STAT-1 are required for TLR8 transcriptional activity. Journal of Biological Chemistry 285 (45): 34773–34780.PubMedPubMedCentralCrossRef Zannetti, C., F. Bonnay, F. Takeshita, P. Parroche, C. Ménétrier-Caux, M. Tommasino, and U.A. Hasan. 2010. C/EBP{delta} and STAT-1 are required for TLR8 transcriptional activity. Journal of Biological Chemistry 285 (45): 34773–34780.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Zhang, J.C., T. Tao, and J.Q. Liu. 2021. PTX3 promotes proliferation, invasion and drug resistance of neuroblastoma cells in children by regulating TLR4/NF-kappaB signaling pathway. Zhonghua Zhong Liu Za Zhi 43 (1): 118–125.PubMed Zhang, J.C., T. Tao, and J.Q. Liu. 2021. PTX3 promotes proliferation, invasion and drug resistance of neuroblastoma cells in children by regulating TLR4/NF-kappaB signaling pathway. Zhonghua Zhong Liu Za Zhi 43 (1): 118–125.PubMed
53.
Zurück zum Zitat Qi, S., F. Zhao, Z. Li, F. Liang, and S. Yu. 2020. Silencing of PTX3 alleviates LPS-induced inflammatory pain by regulating TLR4/NF-kappaB signaling pathway in mice. Bioscience Report 40 (2). Qi, S., F. Zhao, Z. Li, F. Liang, and S. Yu. 2020. Silencing of PTX3 alleviates LPS-induced inflammatory pain by regulating TLR4/NF-kappaB signaling pathway in mice. Bioscience Report 40 (2).
54.
Zurück zum Zitat Rathore, M., C. Girard, M. Ohanna, M. Tichet, R. Ben Jouira, E. Garcia, F. Larbret, M. Gesson, S. Audebert, J.P. Lacour, H. Montaudie, V. Prod’Homme, S. Tartare-Deckert, and M. Deckert. 2019. Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-kappaB signaling pathway. Oncogene 38 (30): 5873–5889.PubMedCrossRef Rathore, M., C. Girard, M. Ohanna, M. Tichet, R. Ben Jouira, E. Garcia, F. Larbret, M. Gesson, S. Audebert, J.P. Lacour, H. Montaudie, V. Prod’Homme, S. Tartare-Deckert, and M. Deckert. 2019. Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-kappaB signaling pathway. Oncogene 38 (30): 5873–5889.PubMedCrossRef
55.
Zurück zum Zitat Jaillon, S., F. Moalli, B. Ragnarsdottir, E. Bonavita, M. Puthia, F. Riva, E. Barbati, M. Nebuloni, L. Cvetko Krajinovic, A. Markotic, S. Valentino, A. Doni, S. Tartari, G. Graziani, A. Montanelli, Y. Delneste, C. Svanborg, C. Garlanda, and A. Mantovani. 2014. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection. Immunity 40 (4): 621–632.PubMedCrossRef Jaillon, S., F. Moalli, B. Ragnarsdottir, E. Bonavita, M. Puthia, F. Riva, E. Barbati, M. Nebuloni, L. Cvetko Krajinovic, A. Markotic, S. Valentino, A. Doni, S. Tartari, G. Graziani, A. Montanelli, Y. Delneste, C. Svanborg, C. Garlanda, and A. Mantovani. 2014. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection. Immunity 40 (4): 621–632.PubMedCrossRef
56.
Zurück zum Zitat Wang, X.Q., H.Q. Wan, X.J. Wei, Y. Zhang, and P. Qu. 2016. CLI-095 decreases atherosclerosis by modulating foam cell formation in apolipoprotein E-deficient mice. Molecular Medicine Reports 14 (1): 49–56.PubMedPubMedCentralCrossRef Wang, X.Q., H.Q. Wan, X.J. Wei, Y. Zhang, and P. Qu. 2016. CLI-095 decreases atherosclerosis by modulating foam cell formation in apolipoprotein E-deficient mice. Molecular Medicine Reports 14 (1): 49–56.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Kawamoto, T., M. Ii, T. Kitazaki, Y. Iizawa, and H. Kimura. 2008. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. European Journal of Pharmacology 584 (1): 40–48.PubMedCrossRef Kawamoto, T., M. Ii, T. Kitazaki, Y. Iizawa, and H. Kimura. 2008. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. European Journal of Pharmacology 584 (1): 40–48.PubMedCrossRef
58.
Zurück zum Zitat Ii, M., N. Matsunaga, K. Hazeki, K. Nakamura, K. Takashima, T. Seya, O. Hazeki, T. Kitazaki, and Y. Iizawa. 2006. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Molecular Pharmacology 69 (4): 1288–1295.PubMedCrossRef Ii, M., N. Matsunaga, K. Hazeki, K. Nakamura, K. Takashima, T. Seya, O. Hazeki, T. Kitazaki, and Y. Iizawa. 2006. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Molecular Pharmacology 69 (4): 1288–1295.PubMedCrossRef
Metadaten
Titel
PTX3 Protects Intestinal Mucosal Barrier Damage in Sepsis Through Toll-Like Receptor Signaling Pathway
verfasst von
Jian Li
Yan Li
Ruifeng Chai
Xiangyou Yu
Zhaoxia Yu
Publikationsdatum
10.06.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2022
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01696-z

Weitere Artikel der Ausgabe 6/2022

Inflammation 6/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.