Skip to main content

18.05.2024 | RESEARCH

Resatorvid (TAK-242) Ameliorates Ulcerative Colitis by Modulating Macrophage Polarization and T Helper Cell Balance via TLR4/JAK2/STAT3 Signaling Pathway

verfasst von: Xiaoling Huang, Rong Lin, Huan Liu, Mengying Dai, Jiejie Guo, Wenjia Hui, Weidong Liu, Milamuguli Haerken, Ruixue Zheng, Tangnuer Yushanjiang, Feng Gao

Erschienen in: Inflammation

Einloggen, um Zugang zu erhalten

Abstract

Resatorvid (TAK-242), a specific inhibitor of Toll-like receptor-4 (TLR4), has attracted attention for its anti-inflammatory properties. Despite this, few studies have evaluated its effects on ulcerative colitis (UC). This study aimed to investigate the effects of TAK-242 on macrophage polarization and T helper cell balance and the mechanism by which it alleviates UC. Our findings indicated that TLR4 expression was elevated in patients with UC, a mouse model of UC, and HT29 cells undergoing an inflammatory response. TAK‑242 treatment reduced apoptosis in TNF-α and LPS-stimulated HT29 cells and alleviated symptoms of dextran sulfate sodium (DSS)‑induced colitis in vivo. TAK‑242 downregulated TLR4 expression and decreased the secretion of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β while enhancing IL-10 production. TAK-242 also reduced M1 macrophage polarization and diminished Th1 and Th17 cell infiltration while increasing Th2 cell infiltration and M2 macrophage polarization both in vitro and in vivo. Mechanistically, TAK-242 inhibited the JAK2/STAT3 signaling pathway, an important regulator of macrophage polarization and T helper cell balance. Furthermore, the in vivo and in vitro effects of TAK-242 were partially negated by the administration of the JAK2/STAT3 antagonist AG490, suggesting that TAK-242 inhibits the JAK2/STAT3 pathway to exert its biological activities. Taken together, this study underscores TAK-242 as a promising anti-UC agent, functioning by modulating macrophage polarization and T helper cell balance via the TLR4/JAK2/STAT3 signaling pathway.
Literatur
1.
Zurück zum Zitat Gajendran, M., P. Loganathan, G. Jimenez, A.P. Catinella, N. Ng, C. Umapathy, N. Ziade, and J.G. Hashash. 2019. A comprehensive review and update on ulcerative colitis(). Disease-a-month 65 (12): 100851.PubMedCrossRef Gajendran, M., P. Loganathan, G. Jimenez, A.P. Catinella, N. Ng, C. Umapathy, N. Ziade, and J.G. Hashash. 2019. A comprehensive review and update on ulcerative colitis(). Disease-a-month 65 (12): 100851.PubMedCrossRef
2.
Zurück zum Zitat Du, L., and C. Ha. 2020. Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterology Clinics of North America 49 (4): 643–654.PubMedCrossRef Du, L., and C. Ha. 2020. Epidemiology and Pathogenesis of Ulcerative Colitis. Gastroenterology Clinics of North America 49 (4): 643–654.PubMedCrossRef
3.
Zurück zum Zitat Kucharzik, T., S. Koletzko, K. Kannengiesser, and A. Dignass. 2020. Ulcerative Colitis-Diagnostic and Therapeutic Algorithms. Deutsches Ärzteblatt International 117 (33–34): 564–574.PubMedPubMedCentral Kucharzik, T., S. Koletzko, K. Kannengiesser, and A. Dignass. 2020. Ulcerative Colitis-Diagnostic and Therapeutic Algorithms. Deutsches Ärzteblatt International 117 (33–34): 564–574.PubMedPubMedCentral
5.
Zurück zum Zitat Shi, F., X. Guo, X. Jiang, P. Zhou, Y. Xiao, T. Zhou, G. Chen, Z. Zhao, H. Xiao, C. Hou, et al. 2012. Dysregulated Tim-3 expression and its correlation with imbalanced CD4 helper T cell function in ulcerative colitis. Clinical Immunology (Orlando, Fla) 145 (3): 230–240.PubMedCrossRef Shi, F., X. Guo, X. Jiang, P. Zhou, Y. Xiao, T. Zhou, G. Chen, Z. Zhao, H. Xiao, C. Hou, et al. 2012. Dysregulated Tim-3 expression and its correlation with imbalanced CD4 helper T cell function in ulcerative colitis. Clinical Immunology (Orlando, Fla) 145 (3): 230–240.PubMedCrossRef
6.
Zurück zum Zitat Geremia, A., P. Biancheri, P. Allan, G.R. Corazza, and A. Di Sabatino. 2014. Innate and adaptive immunity in inflammatory bowel disease. Autoimmunity Reviews 13 (1): 3–10.PubMedCrossRef Geremia, A., P. Biancheri, P. Allan, G.R. Corazza, and A. Di Sabatino. 2014. Innate and adaptive immunity in inflammatory bowel disease. Autoimmunity Reviews 13 (1): 3–10.PubMedCrossRef
7.
Zurück zum Zitat Zhao, J., Q. Lu, Y. Liu, Z. Shi, L. Hu, Z. Zeng, Y. Tu, Z. Xiao, and Q. Xu. 2021. Th17 Cells in Inflammatory Bowel Disease: Cytokines, Plasticity, and Therapies. Journal of Immunology Research 2021: 8816041.PubMedPubMedCentralCrossRef Zhao, J., Q. Lu, Y. Liu, Z. Shi, L. Hu, Z. Zeng, Y. Tu, Z. Xiao, and Q. Xu. 2021. Th17 Cells in Inflammatory Bowel Disease: Cytokines, Plasticity, and Therapies. Journal of Immunology Research 2021: 8816041.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Harbour, S.N., C.L. Maynard, C.L. Zindl, T.R. Schoeb, and C.T. Weaver. 2015. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proceedings of the National Academy of Sciences of the United States of America 112 (22): 7061–7066.PubMedPubMedCentralCrossRef Harbour, S.N., C.L. Maynard, C.L. Zindl, T.R. Schoeb, and C.T. Weaver. 2015. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proceedings of the National Academy of Sciences of the United States of America 112 (22): 7061–7066.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Heller, F., P. Florian, C. Bojarski, J. Richter, M. Christ, B. Hillenbrand, J. Mankertz, A.H. Gitter, N. Bürgel, M. Fromm, et al. 2005. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129 (2): 550–564.PubMedCrossRef Heller, F., P. Florian, C. Bojarski, J. Richter, M. Christ, B. Hillenbrand, J. Mankertz, A.H. Gitter, N. Bürgel, M. Fromm, et al. 2005. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129 (2): 550–564.PubMedCrossRef
10.
Zurück zum Zitat Zeng, J., M. Li, Q. Zhao, M. Chen, L. Zhao, S. Wei, H. Yang, Y. Zhao, A. Wang, J. Shen, et al. 2023. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases. Journal of Pharmaceutical Analysis 13 (6): 545–562.PubMedPubMedCentralCrossRef Zeng, J., M. Li, Q. Zhao, M. Chen, L. Zhao, S. Wei, H. Yang, Y. Zhao, A. Wang, J. Shen, et al. 2023. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases. Journal of Pharmaceutical Analysis 13 (6): 545–562.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Xia, P., Y. Wu, S. Lian, L. Yan, X. Meng, Q. Duan, and G. Zhu. 2021. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Applied Microbiology and Biotechnology 105 (13): 5341–5355.PubMedPubMedCentralCrossRef Xia, P., Y. Wu, S. Lian, L. Yan, X. Meng, Q. Duan, and G. Zhu. 2021. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Applied Microbiology and Biotechnology 105 (13): 5341–5355.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Brubaker, S.W., K.S. Bonham, I. Zanoni, and J.C. Kagan. 2015. Innate Immune Pattern Recognition: A Cell Biological Perspective. Annual Review of Immunology 33 (1): 257–290.PubMedPubMedCentralCrossRef Brubaker, S.W., K.S. Bonham, I. Zanoni, and J.C. Kagan. 2015. Innate Immune Pattern Recognition: A Cell Biological Perspective. Annual Review of Immunology 33 (1): 257–290.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Park, B.S., and J.O. Lee. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental & Molecular Medicine 45: e66.CrossRef Park, B.S., and J.O. Lee. 2013. Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental & Molecular Medicine 45: e66.CrossRef
15.
Zurück zum Zitat Liu, Y., H. Yin, M. Zhao, and Q. Lu. 2014. TLR2 and TLR4 in autoimmune diseases: A comprehensive review. Clinical Reviews in Allergy and Immunology 47 (2): 136–147.PubMedCrossRef Liu, Y., H. Yin, M. Zhao, and Q. Lu. 2014. TLR2 and TLR4 in autoimmune diseases: A comprehensive review. Clinical Reviews in Allergy and Immunology 47 (2): 136–147.PubMedCrossRef
16.
Zurück zum Zitat Hu, L.H., J.Y. Liu, and J.B. Yin. 2021. Eriodictyol attenuates TNBS-induced ulcerative colitis through repressing TLR4/NF-kB signaling pathway in rats. Kaohsiung Journal of Medical Sciences 37 (9): 812–818.PubMedCrossRef Hu, L.H., J.Y. Liu, and J.B. Yin. 2021. Eriodictyol attenuates TNBS-induced ulcerative colitis through repressing TLR4/NF-kB signaling pathway in rats. Kaohsiung Journal of Medical Sciences 37 (9): 812–818.PubMedCrossRef
17.
Zurück zum Zitat Liu, B., X. Piao, W. Niu, Q. Zhang, C. Ma, T. Wu, Q. Gu, T. Cui, and S. Li. 2020. Kuijieyuan Decoction Improved Intestinal Barrier Injury of Ulcerative Colitis by Affecting TLR4-Dependent PI3K/AKT/NF-kappaB Oxidative and Inflammatory Signaling and Gut Microbiota. Frontiers in Pharmacology 11: 1036.PubMedPubMedCentralCrossRef Liu, B., X. Piao, W. Niu, Q. Zhang, C. Ma, T. Wu, Q. Gu, T. Cui, and S. Li. 2020. Kuijieyuan Decoction Improved Intestinal Barrier Injury of Ulcerative Colitis by Affecting TLR4-Dependent PI3K/AKT/NF-kappaB Oxidative and Inflammatory Signaling and Gut Microbiota. Frontiers in Pharmacology 11: 1036.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Tam, J.S.Y., J.K. Coller, P.A. Hughes, C.A. Prestidge, and J.M. Bowen. 2021. Toll-like receptor 4 (TLR4) antagonists as potential therapeutics for intestinal inflammation. Indian Journal of Gastroenterology 40 (1): 5–21.PubMedPubMedCentralCrossRef Tam, J.S.Y., J.K. Coller, P.A. Hughes, C.A. Prestidge, and J.M. Bowen. 2021. Toll-like receptor 4 (TLR4) antagonists as potential therapeutics for intestinal inflammation. Indian Journal of Gastroenterology 40 (1): 5–21.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Dong, J., Y. Liao, and B. Wu. 2022. TAK-242 ameliorates epileptic symptoms in mice by inhibiting the TLR4/NF-kappaB signaling pathway. Annals of Translational Medicine 10 (14): 795.PubMedPubMedCentralCrossRef Dong, J., Y. Liao, and B. Wu. 2022. TAK-242 ameliorates epileptic symptoms in mice by inhibiting the TLR4/NF-kappaB signaling pathway. Annals of Translational Medicine 10 (14): 795.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Plunk, M.A., A. Alaniz, O.P. Olademehin, T.L. Ellington, K.L. Shuford, and R.R. Kane. 2020. Design and Catalyzed Activation of Tak-242 Prodrugs for Localized Inhibition of TLR4-Induced Inflammation. ACS Medicinal Chemistry Letters 11 (2): 141–146.PubMedPubMedCentralCrossRef Plunk, M.A., A. Alaniz, O.P. Olademehin, T.L. Ellington, K.L. Shuford, and R.R. Kane. 2020. Design and Catalyzed Activation of Tak-242 Prodrugs for Localized Inhibition of TLR4-Induced Inflammation. ACS Medicinal Chemistry Letters 11 (2): 141–146.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Samarpita, S., J.Y. Kim, M.K. Rasool, and K.S. Kim. 2020. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug. Arthritis Research & Therapy 22 (1): 16.CrossRef Samarpita, S., J.Y. Kim, M.K. Rasool, and K.S. Kim. 2020. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug. Arthritis Research & Therapy 22 (1): 16.CrossRef
22.
Zurück zum Zitat Xing, Z., T. Zhen, F. Jie, Y. Jie, L. Shiqi, Z. Kaiyi, O. Zhicui, and H. Mingyan. 2022. Early Toll-like receptor 4 inhibition improves immune dysfunction in the hippocampus after hypoxic-ischemic brain damage. International Journal of Medical Sciences 19 (1): 142–151.PubMedPubMedCentralCrossRef Xing, Z., T. Zhen, F. Jie, Y. Jie, L. Shiqi, Z. Kaiyi, O. Zhicui, and H. Mingyan. 2022. Early Toll-like receptor 4 inhibition improves immune dysfunction in the hippocampus after hypoxic-ischemic brain damage. International Journal of Medical Sciences 19 (1): 142–151.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Bamidele, A.O., P.A. Svingen, M.R. Sagstetter, O.F. Sarmento, M. Gonzalez, M.B. Braga Neto, S. Kugathasan, G. Lomberk, R.A. Urrutia, and W.A. Faubion Jr. 2019. Disruption of FOXP3-EZH2 Interaction Represents a Pathobiological Mechanism in Intestinal Inflammation. Cellular and Molecular Gastroenterology and Hepatology 7 (1): 55–71.PubMedCrossRef Bamidele, A.O., P.A. Svingen, M.R. Sagstetter, O.F. Sarmento, M. Gonzalez, M.B. Braga Neto, S. Kugathasan, G. Lomberk, R.A. Urrutia, and W.A. Faubion Jr. 2019. Disruption of FOXP3-EZH2 Interaction Represents a Pathobiological Mechanism in Intestinal Inflammation. Cellular and Molecular Gastroenterology and Hepatology 7 (1): 55–71.PubMedCrossRef
24.
Zurück zum Zitat Simões, F.C., T.J. Cahill, A. Kenyon, D. Gavriouchkina, J.M. Vieira, X. Sun, D. Pezzolla, C. Ravaud, E. Masmanian, M. Weinberger, et al. 2020. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nature Communications 11 (1): 600.PubMedPubMedCentralCrossRef Simões, F.C., T.J. Cahill, A. Kenyon, D. Gavriouchkina, J.M. Vieira, X. Sun, D. Pezzolla, C. Ravaud, E. Masmanian, M. Weinberger, et al. 2020. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nature Communications 11 (1): 600.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Wang, X., J. Wang, J. Zhao, H. Wang, J. Chen, and J. Wu. 2022. HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment. Theranostics 12 (2): 963–975.PubMedPubMedCentralCrossRef Wang, X., J. Wang, J. Zhao, H. Wang, J. Chen, and J. Wu. 2022. HMGA2 facilitates colorectal cancer progression via STAT3-mediated tumor-associated macrophage recruitment. Theranostics 12 (2): 963–975.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Li, Y.Y., X.J. Wang, Y.L. Su, Q. Wang, S.W. Huang, Z.F. Pan, Y.P. Chen, J.J. Liang, M.L. Zhang, X.Q. Xie, et al. 2022. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacologica Sinica 43 (6): 1495–1507.PubMedCrossRef Li, Y.Y., X.J. Wang, Y.L. Su, Q. Wang, S.W. Huang, Z.F. Pan, Y.P. Chen, J.J. Liang, M.L. Zhang, X.Q. Xie, et al. 2022. Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via AhR/IL-22 pathway in ILC3s. Acta Pharmacologica Sinica 43 (6): 1495–1507.PubMedCrossRef
27.
Zurück zum Zitat Jia, D.J., Q.W. Wang, Y.Y. Hu, J.M. He, Q.W. Ge, Y.D. Qi, L.Y. Chen, Y. Zhang, L.N. Fan, Y.F. Lin, et al. 2022. Lactobacillus johnsonii alleviates colitis by TLR1/2-STAT3 mediated CD206(+) macrophages(IL-10) activation. Gut Microbes 14 (1): 2145843.PubMedPubMedCentralCrossRef Jia, D.J., Q.W. Wang, Y.Y. Hu, J.M. He, Q.W. Ge, Y.D. Qi, L.Y. Chen, Y. Zhang, L.N. Fan, Y.F. Lin, et al. 2022. Lactobacillus johnsonii alleviates colitis by TLR1/2-STAT3 mediated CD206(+) macrophages(IL-10) activation. Gut Microbes 14 (1): 2145843.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Alex, P., N.C. Zachos, T. Nguyen, L. Gonzales, T.E. Chen, L.S. Conklin, M. Centola, and X. Li. 2009. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflammatory Bowel Diseases 15 (3): 341–352.PubMedCrossRef Alex, P., N.C. Zachos, T. Nguyen, L. Gonzales, T.E. Chen, L.S. Conklin, M. Centola, and X. Li. 2009. Distinct cytokine patterns identified from multiplex profiles of murine DSS and TNBS-induced colitis. Inflammatory Bowel Diseases 15 (3): 341–352.PubMedCrossRef
29.
Zurück zum Zitat Wang, J., G. Zhu, C. Sun, K. Xiong, T. Yao, Y. Su, and H. Fang. 2020. TAK-242 ameliorates DSS-induced colitis by regulating the gut microbiota and the JAK2/STAT3 signaling pathway. Microbial Cell Factories 19 (1): 158.PubMedPubMedCentralCrossRef Wang, J., G. Zhu, C. Sun, K. Xiong, T. Yao, Y. Su, and H. Fang. 2020. TAK-242 ameliorates DSS-induced colitis by regulating the gut microbiota and the JAK2/STAT3 signaling pathway. Microbial Cell Factories 19 (1): 158.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Lee, M., S.Y. Shim, and S.H. Sung. 2017. Triterpenoids Isolated from Alnus japonica Inhibited LPS-Induced Inflammatory Mediators in HT-29 Cells and RAW264.7 Cells. Biological & Pharmaceutical Bulletin 40 (9): 1544–1550.CrossRef Lee, M., S.Y. Shim, and S.H. Sung. 2017. Triterpenoids Isolated from Alnus japonica Inhibited LPS-Induced Inflammatory Mediators in HT-29 Cells and RAW264.7 Cells. Biological & Pharmaceutical Bulletin 40 (9): 1544–1550.CrossRef
32.
Zurück zum Zitat Monteleone, G., F. Pallone, and T.T. MacDonald. 2011. Emerging immunological targets in inflammatory bowel disease. Current Opinion in Pharmacology 11 (6): 640–645.PubMedCrossRef Monteleone, G., F. Pallone, and T.T. MacDonald. 2011. Emerging immunological targets in inflammatory bowel disease. Current Opinion in Pharmacology 11 (6): 640–645.PubMedCrossRef
33.
Zurück zum Zitat Coskun, M., M. Salem, J. Pedersen, and O.H. Nielsen. 2013. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacological research 76: 1–8.PubMedCrossRef Coskun, M., M. Salem, J. Pedersen, and O.H. Nielsen. 2013. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacological research 76: 1–8.PubMedCrossRef
34.
Zurück zum Zitat Salas, A., C. Hernandez-Rocha, M. Duijvestein, W. Faubion, D. McGovern, S. Vermeire, S. Vetrano, and N. Vande Casteele. 2020. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology 17 (6): 323–337.CrossRef Salas, A., C. Hernandez-Rocha, M. Duijvestein, W. Faubion, D. McGovern, S. Vermeire, S. Vetrano, and N. Vande Casteele. 2020. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology 17 (6): 323–337.CrossRef
35.
Zurück zum Zitat Szumilas, D., R. Krysiak, and B. Okopien. 2013. The role of TLR4 receptor in development of inflammation and carcinogenesis in ulcerative colitis and pharmacotherapy of this disorder. Wiadomosci Lekarskie 66 (1): 3–9.PubMed Szumilas, D., R. Krysiak, and B. Okopien. 2013. The role of TLR4 receptor in development of inflammation and carcinogenesis in ulcerative colitis and pharmacotherapy of this disorder. Wiadomosci Lekarskie 66 (1): 3–9.PubMed
36.
Zurück zum Zitat Yao, D., M. Dong, C. Dai, and S. Wu. 2019. Inflammation and Inflammatory Cytokine Contribute to the Initiation and Development of Ulcerative Colitis and Its Associated Cancer. Inflammatory Bowel Diseases 25 (10): 1595–1602.PubMedCrossRef Yao, D., M. Dong, C. Dai, and S. Wu. 2019. Inflammation and Inflammatory Cytokine Contribute to the Initiation and Development of Ulcerative Colitis and Its Associated Cancer. Inflammatory Bowel Diseases 25 (10): 1595–1602.PubMedCrossRef
37.
Zurück zum Zitat Guo, X.Y., X.J. Liu, and J.Y. Hao. 2020. Gut microbiota in ulcerative colitis: Insights on pathogenesis and treatment. Journal of Digestive Diseases 21 (3): 147–159.PubMedCrossRef Guo, X.Y., X.J. Liu, and J.Y. Hao. 2020. Gut microbiota in ulcerative colitis: Insights on pathogenesis and treatment. Journal of Digestive Diseases 21 (3): 147–159.PubMedCrossRef
38.
Zurück zum Zitat Ortega-Cava, C.F., S. Ishihara, M.A. Rumi, K. Kawashima, N. Ishimura, H. Kazumori, J. Udagawa, Y. Kadowaki, and Y. Kinoshita. 2003. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. Journal of Immunology (Baltimore, Md : 1950) 170 (8): 3977–3985.PubMed Ortega-Cava, C.F., S. Ishihara, M.A. Rumi, K. Kawashima, N. Ishimura, H. Kazumori, J. Udagawa, Y. Kadowaki, and Y. Kinoshita. 2003. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. Journal of Immunology  (Baltimore, Md : 1950) 170 (8): 3977–3985.PubMed
39.
Zurück zum Zitat Liu, Y., Z. Zhang, L. Wang, J. Li, L. Dong, W. Yue, J. Chen, X. Sun, L. Zhong, and D. Sun. 2010. TLR4 monoclonal antibody blockade suppresses dextran-sulfate-sodium-induced colitis in mice. Journal of Gastroenterology and Hepatology 25 (1): 209–214.PubMedCrossRef Liu, Y., Z. Zhang, L. Wang, J. Li, L. Dong, W. Yue, J. Chen, X. Sun, L. Zhong, and D. Sun. 2010. TLR4 monoclonal antibody blockade suppresses dextran-sulfate-sodium-induced colitis in mice. Journal of Gastroenterology and Hepatology 25 (1): 209–214.PubMedCrossRef
40.
Zurück zum Zitat Facchini, F.A., D. Di Fusco, S. Barresi, A. Luraghi, A. Minotti, F. Granucci, G. Monteleone, F. Peri, and I. Monteleone. 2020. Effect of chemical modulation of toll-like receptor 4 in an animal model of ulcerative colitis. European Journal of Clinical Pharmacology 76 (3): 409–418.PubMedCrossRef Facchini, F.A., D. Di Fusco, S. Barresi, A. Luraghi, A. Minotti, F. Granucci, G. Monteleone, F. Peri, and I. Monteleone. 2020. Effect of chemical modulation of toll-like receptor 4 in an animal model of ulcerative colitis. European Journal of Clinical Pharmacology 76 (3): 409–418.PubMedCrossRef
41.
Zurück zum Zitat Xiong, T., X. Zheng, K. Zhang, H. Wu, Y. Dong, F. Zhou, B. Cheng, L. Li, W. Xu, J. Su, et al. 2022. Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-kappaB pathway. Journal of Ethnopharmacology 289: 115001.PubMedCrossRef Xiong, T., X. Zheng, K. Zhang, H. Wu, Y. Dong, F. Zhou, B. Cheng, L. Li, W. Xu, J. Su, et al. 2022. Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-kappaB pathway. Journal of Ethnopharmacology 289: 115001.PubMedCrossRef
42.
Zurück zum Zitat Li, Y., X. Pan, M. Yin, C. Li, and L. Han. 2021. Preventive Effect of Lycopene in Dextran Sulfate Sodium-Induced Ulcerative Colitis Mice through the Regulation of TLR4/TRIF/NF-kappaB Signaling Pathway and Tight Junctions. Journal of Agriculture and Food Chemistry 69 (45): 13500–13509.CrossRef Li, Y., X. Pan, M. Yin, C. Li, and L. Han. 2021. Preventive Effect of Lycopene in Dextran Sulfate Sodium-Induced Ulcerative Colitis Mice through the Regulation of TLR4/TRIF/NF-kappaB Signaling Pathway and Tight Junctions. Journal of Agriculture and Food Chemistry 69 (45): 13500–13509.CrossRef
43.
Zurück zum Zitat Matsunaga, N., N. Tsuchimori, T. Matsumoto, and M. Ii. 2011. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Molecular Pharmacology 79 (1): 34–41.PubMedCrossRef Matsunaga, N., N. Tsuchimori, T. Matsumoto, and M. Ii. 2011. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Molecular Pharmacology 79 (1): 34–41.PubMedCrossRef
44.
Zurück zum Zitat Wei, Z., X. Sun, Q. Xu, Y. Zhang, F. Tian, H. Sun, H. Zheng, and J. Dai. 2016. TAK-242 suppresses lipopolysaccharide-induced inflammation in human coronary artery endothelial cells. Die Pharmazie 71 (10): 583–587.PubMed Wei, Z., X. Sun, Q. Xu, Y. Zhang, F. Tian, H. Sun, H. Zheng, and J. Dai. 2016. TAK-242 suppresses lipopolysaccharide-induced inflammation in human coronary artery endothelial cells. Die Pharmazie 71 (10): 583–587.PubMed
45.
Zurück zum Zitat Karami, J., E. Farhadi, A.A. Delbandi, M. Shekarabi, M.N. Tahmasebi, A. Sharafat Vaziri, M. Akhtari, M.J. Mousavi, A. Jamshidi, and M. Mahmoudi. 2021. Evaluation of TAK-242 (Resatorvid) Effects on Inflammatory Status of Fibroblast-like Synoviocytes in Rheumatoid Arthritis and Trauma Patients. Iranian Journal of Allergy, Asthma, and Immunology 20 (4): 453–464.PubMed Karami, J., E. Farhadi, A.A. Delbandi, M. Shekarabi, M.N. Tahmasebi, A. Sharafat Vaziri, M. Akhtari, M.J. Mousavi, A. Jamshidi, and M. Mahmoudi. 2021. Evaluation of TAK-242 (Resatorvid) Effects on Inflammatory Status of Fibroblast-like Synoviocytes in Rheumatoid Arthritis and Trauma Patients. Iranian Journal of Allergy, Asthma, and Immunology 20 (4): 453–464.PubMed
46.
Zurück zum Zitat Zhang, J., Y. Zhao, T. Hou, H. Zeng, D. Kalambhe, B. Wang, X. Shen, and Y. Huang. 2020. Macrophage-based nanotherapeutic strategies in ulcerative colitis. Journal of Controlled Release 320: 363–380.PubMedCrossRef Zhang, J., Y. Zhao, T. Hou, H. Zeng, D. Kalambhe, B. Wang, X. Shen, and Y. Huang. 2020. Macrophage-based nanotherapeutic strategies in ulcerative colitis. Journal of Controlled Release 320: 363–380.PubMedCrossRef
47.
Zurück zum Zitat He, R., Y. Li, C. Han, R. Lin, W. Qian, and X. Hou. 2019. L-Fucose ameliorates DSS-induced acute colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-kB activation. International Immunopharmacology 73: 379–388.PubMedCrossRef He, R., Y. Li, C. Han, R. Lin, W. Qian, and X. Hou. 2019. L-Fucose ameliorates DSS-induced acute colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-kB activation. International Immunopharmacology 73: 379–388.PubMedCrossRef
48.
Zurück zum Zitat Zhuang, H., Q. Lv, C. Zhong, Y. Cui, L. He, C. Zhang, and J. Yu. 2021. Tiliroside Ameliorates Ulcerative Colitis by Restoring the M1/M2 Macrophage Balance via the HIF-1alpha/glycolysis Pathway. Frontiers in Immunology 12: 649463.PubMedPubMedCentralCrossRef Zhuang, H., Q. Lv, C. Zhong, Y. Cui, L. He, C. Zhang, and J. Yu. 2021. Tiliroside Ameliorates Ulcerative Colitis by Restoring the M1/M2 Macrophage Balance via the HIF-1alpha/glycolysis Pathway. Frontiers in Immunology 12: 649463.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Sun, Y., F. Diao, Y. Niu, X. Li, H. Zhou, Q. Mei, and Y. Li. 2020. Apple polysaccharide prevents from colitis-associated carcinogenesis through regulating macrophage polarization. International Journal of Biological Macromolecules 161: 704–711.PubMedCrossRef Sun, Y., F. Diao, Y. Niu, X. Li, H. Zhou, Q. Mei, and Y. Li. 2020. Apple polysaccharide prevents from colitis-associated carcinogenesis through regulating macrophage polarization. International Journal of Biological Macromolecules 161: 704–711.PubMedCrossRef
50.
Zurück zum Zitat Gamah, M., M. Alahdal, Y. Zhang, Y. Zhou, Q. Ji, Z. Yuan, Y. Han, X. Shen, Y. Ren, and W. Zhang. 2021. High-altitude hypoxia exacerbates dextran sulfate sodium (DSS)-induced colitis by upregulating Th1 and Th17 lymphocytes. Bioengineered 12 (1): 7985–7994.PubMedPubMedCentralCrossRef Gamah, M., M. Alahdal, Y. Zhang, Y. Zhou, Q. Ji, Z. Yuan, Y. Han, X. Shen, Y. Ren, and W. Zhang. 2021. High-altitude hypoxia exacerbates dextran sulfate sodium (DSS)-induced colitis by upregulating Th1 and Th17 lymphocytes. Bioengineered 12 (1): 7985–7994.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Cordes, F., D. Foell, J.N. Ding, G. Varga, and D. Bettenworth. 2020. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn’s disease. World Journal of Gastroenterology 26 (28): 4055–4075.PubMedPubMedCentralCrossRef Cordes, F., D. Foell, J.N. Ding, G. Varga, and D. Bettenworth. 2020. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn’s disease. World Journal of Gastroenterology 26 (28): 4055–4075.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Yao, D., Z. Zhou, P. Wang, L. Zheng, Y. Huang, Y. Duan, B. Liu, and Y. Li. 2021. MiR-125-5p/IL-6R axis regulates macrophage inflammatory response and intestinal epithelial cell apoptosis in ulcerative colitis through JAK1/STAT3 and NF-kappaB pathway. Cell Cycle 20 (23): 2547–2564.PubMedPubMedCentralCrossRef Yao, D., Z. Zhou, P. Wang, L. Zheng, Y. Huang, Y. Duan, B. Liu, and Y. Li. 2021. MiR-125-5p/IL-6R axis regulates macrophage inflammatory response and intestinal epithelial cell apoptosis in ulcerative colitis through JAK1/STAT3 and NF-kappaB pathway. Cell Cycle 20 (23): 2547–2564.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Zhao, Y., H. Luan, H. Jiang, Y. Xu, X. Wu, Y. Zhang, and R. Li. 2021. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling. Phytomedicine 84: 153519.PubMedCrossRef Zhao, Y., H. Luan, H. Jiang, Y. Xu, X. Wu, Y. Zhang, and R. Li. 2021. Gegen Qinlian decoction relieved DSS-induced ulcerative colitis in mice by modulating Th17/Treg cell homeostasis via suppressing IL-6/JAK2/STAT3 signaling. Phytomedicine 84: 153519.PubMedCrossRef
Metadaten
Titel
Resatorvid (TAK-242) Ameliorates Ulcerative Colitis by Modulating Macrophage Polarization and T Helper Cell Balance via TLR4/JAK2/STAT3 Signaling Pathway
verfasst von
Xiaoling Huang
Rong Lin
Huan Liu
Mengying Dai
Jiejie Guo
Wenjia Hui
Weidong Liu
Milamuguli Haerken
Ruixue Zheng
Tangnuer Yushanjiang
Feng Gao
Publikationsdatum
18.05.2024
Verlag
Springer US
Erschienen in
Inflammation
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02028-z

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.