Skip to main content
Erschienen in: Clinical Oral Investigations 3/2024

Open Access 01.03.2024 | Research

Simultaneous standard total joint prosthesis reconstruction with SSRO and Le Fort I osteotomy in the treatment of unilateral temporomandibular joint ankylosis with jaw deformity: a case cohort study

verfasst von: Dong Huang, Luxiang Zou, Chuan Lu, Jieyun Zhao, Dongmei He, Chi Yang

Erschienen in: Clinical Oral Investigations | Ausgabe 3/2024

Abstract

Objective

Unilateral temporomandibular joint ankylosis with jaw deformity (UTMJAJD) may require simultaneous total joint prosthesis (TJP) reconstruction, sagittal split ramus (SSRO), and Le Fort I osteotomies. The purpose of this study was to evaluate outcomes in patients treated with these procedures.

Methods

Patients diagnosed UTMJAJD between 2016 and 2018 were selected for the study. Mandible-first procedure was performed after ankylosis release with TJP on the ankylosed side and SSRO on the contralateral side. Le Fort I osteotomy with and without genioplasty was lastly performed. Maximal incisor opening (MIO), facial symmetry, and jaw and condyle stability were compared before, after operation, and during follow-ups.

Results

Seven patients were included in the study. Their average chin deviation was 9.5 ± 4.2 mm, and maxillary cant was 5.1 ± 3.0°. After operation, jaw deformity significantly improved, with chin deviation corrected 7.6 ± 4.1 mm (p = 0.015) and advanced 5.9 ± 2.5 mm (p = 0.006). After an average follow-up of 26.6 ± 17.1 months, MIO significantly increased from 11.4 ± 9.3 to 35.7 ± 2.6 mm (p = 0.000). The occlusion was stable with no significant positional or rotational changes of the jaw (p > 0.05). There was no obvious condylar resorption during follow-ups.

Conclusion

Simultaneous TJP reconstruction, SSRO, and Le Fort I osteotomy are reliable and effective methods for the treatment of UTMJAJD.
Hinweise
Huang Dong and Zou Luxiang are co-first authors.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Temporomandibular joint ankylosis (TMJA) is a severe joint disease that is mainly caused by trauma or infection. It can affect masticatory function, digestion, speech, as well as oral hygiene [15]. When it occurs in childhood, dentofacial deformities and obstructive sleep apnea syndrome (OSAS) may develop [611]. Surgery is the only treatment for TMJA. According to our previous classification [3], patients who had no joint structures or insufficient functional residual condyles require joint reconstruction. Total joint prosthesis (TJP) has gradually replaced autogenous bone graft for TMJ reconstruction with the advantages of no resorption and low relapse rates [12, 13].
For patients with jaw deformities, joint reconstruction is combined with orthognathic surgery simultaneously or secondarily [5]. We have reported using standard TJP with Le Fort I osteotomy to correct bilateral TMJA with severe mandibular deficiency [1214]. However, for patients with unilateral TMJA with jaw deformity (UTMJAJD), the method of joint reconstruction and stability of the contralateral healthy joint with orthognathic surgery has not been reported.
The aim of this study was to introduce a surgical method for UTMJAJD under the guide of computer-assisted surgery (CAS) and to evaluate its stability by three-dimensional measurement.

Materials and methods

Patient selection

This is a retrospective study approved by the Ethics Committee of Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SH9H-2018-T37-1). Patients diagnosed with UTMJAJD by CT from November 2016 to November 2018 were recruited. The inclusion criteria were as follows: (1) age over 18 years; (2) UTMJA without residual functional condyle; (3) TMJ reconstruction using prostheses; and (4) simultaneous orthognathic surgery including SSRO on the contralateral side and Le Fort I osteotomy ± genioplasty to correct jaw deformity. The exclusion criteria were (1) incomplete clinical and CT data before operation, within 1 week after operation or during follow-ups; (2) previous contralateral joint surgery; and (3) follow-up periods less than 6 months.

Preoperative measurements and virtual surgical planning

Before surgery (T0), all patients underwent CT scans with a slice thickness of 0.625 mm (GE Healthcare, Chicago, IL). The scanning data was saved in Digital Imaging and Communications in Medicine (DICOM) format for further use. CAS procedure including deformity measurement and surgery design was performed under the supervision of both surgeons and orthodontists. All patients were planned to receive a surgery-first procedure, without post-operative orthodontic treatment.
Three-dimensional reconstruction and cephalometry were performed using Proplan CMF 1.4 software (Materialize, Leuven, Belgium). The definitions of cephalometry landmarks are listed in Table 1, and pre-operative measurements were recorded as T0. A coordinate system was established, with the X plane (FH plane or horizontal plane) passing through OrL, OrR, and the middle point of bilateral porion points (PoMid); the Y plane (sagittal plane) passing through N, S, and Ba; and the Z plane (coronal plane) passing through N and perpendicular to the X and Y planes. Preoperative procedures included (Fig. 1):
Table 1
Measurement definition
Values
Definition
Coordinate system
  FH plane (X plane)
A plane passes bilateral orbital point (OrL, OrR) and the middle point of bilateral porion points (PoMid)
  Middle Sagittal plane (Y plane)
A plane passes nasal point (N), anterior margin of foramen occipitale magnum (Ba), and fossa hypophysialis (S)
  Coronal plane (Z plane)
A plane passes nasal point (N) and perpendicular to X plane and Y plane
Maxillary stability
  SNA (°)
Angle of sella-nasal-subspinale (A point)
  Central incisor distance (CI, mm)
Distance between central incisor (CI) point and FH plane
  Cant 3 (mm)
Difference between distances of upper canine cusp points (U3L/R) and FH plane
  Cant 6 (mm)
Difference between distances of upper first molar medial-buccal cusp points (U6L/R) and FH plane
  Maxillary cant angle (°)
Projection of the angle between maxilla occlusal plane (defined by CI, U6L, and U6R) and FH plane on Z plane
  MP-FH (°)
Angle between maxilla occlusal plane (defined by CI, U6L, and U6R) and FH plane
  Maxilla pitch (°)
Angle between maxilla pitch plane (defined by A, CI and perpendicular to mid-sagittal plane) and X plane
  Maxilla roll (°)
Angle between maxilla roll plane (defined by U6L, U6R and perpendicular to coronal plane) and Y plane
  Maxilla yaw (°)
Angle between maxilla yaw plane (defined by U6L, U6R and perpendicular to FH plane) and Z plane
Mandibular stability
  SNB (°)
Angle of sella-nasal-supramental (B point)
  Chin deviation (mm)
Distance between gnathion (Gn) and mid-sagittal plane
  Chin retrusion (mm)
Distance between gnathion (Gn) and Z plane
Joint stability
  Ramus height (RH, mm)
Distance between condyle point (CoL/R) and gonion point (Go)
  Ramus height correct (RH′, mm)
Distance between condyle point and anterior notch of mandibular angle. Used to correct the condyle height value on the alloplastic TJP side
  Condyle pitch (°)
Angle between condyle pitch plane (defined by anterior condyle-CoA, posterior condyle-CoP, and perpendicular to Y plane) and FH plane
  Condyle roll (°)
Angle between condyle roll plane (defined by lateral condyle-CoLat, medial condyle-CoMed and perpendicular to Z plane) and Y plane
  Condyle yaw (°)
Angle between condyle yaw plane (defined by CoLat, CoMed and perpendicular to X plane) and Z plane
  Co-X (mm)
Distance between contralateral Co point and the FH plane
  Co-Y (mm)
Distance between contralateral Co point and the Y plane
  Co-Z (mm)
Distance between contralateral Co point and Z plane
  CoLat-Y (mm)
Distance between contralateral CoLat point and the Y plane
  CoMed-Y (mm)
Distance between contralateral CoMed points and the Y plane
  CoA-Z (mm)
Distance between contralateral CoA points and the Z plane
  CoP-Z (mm)
Distance between contralateral CoP points and the Z plane

Jaw symmetry measurement

Maxillary symmetry was assessed based on maxillary cant, which is the difference between the distances of the upper canine cusp points or upper first molar medial-buccal cusp points and the FH plane. The angle between the maxillary occlusal plane and FH plane was also measured.
Mandible symmetry was assessed based on several parameters, including chin deviation (distance between Gn and Y Plane), chin retrusion (distance between Gn and Z Plane), and ramus height (RH) on both sides.
These parameters are used to evaluate the symmetry of the jaw, and to help evaluate the outcome of the surgery.
In addition, the ankylosed bony mass was marked and measured to determine the optimal region and depth for the osteotomy. This approach ensured that important anatomical structures were protected from potential damage during the surgery.

Virtual surgery design and splint manufacture

The virtual surgery performed consisted of several steps (Fig. 2A): (1) Le Fort I osteotomy to level the maxillary occlusal plane with 1–2-mm overcorrection at the first molar; (2) resection of the ankylosed bony mass with a minimum gap of 15–20 mm between the mandibular ramus stump and the articular fossa; (3) TJP implantation and contralateral SSRO to level the mandible and maintain the original occlusion; and (4) genioplasty was selected to further correct chin deviation and retrusion if necessary.
An intermediate occlusal splint of mandible first was designed and manufactured. Additionally, guiding templates were fabricated for the resection of the ankylosed bony mass, and the accuracy of the TJP implantation.

Surgical procedure

Modified preauricular [15] and submandibular incisions were performed to access the bony fusion and ramus. An osteotomy guide was used to aid the bony fusion resection and the coronoid process removal (Fig. 3A). To prevent re-ankylosis and enable the implantation of the fossa prosthesis, a gap of at least 15–20 mm between the mandibular ramus stump and fossa was necessary. After sealing the joint region and disinfecting the oral cavity, the contralateral coronoid process was removed if mouth opening was less than 35 mm. Subsequently, SSRO was conducted to correct the mandibular asymmetry. The bony fragments were fixed after intermaxillary fixation (IMF) with the intermediate occlusal splint (Fig. 3B). The oral cavity was then sealed, and the facial area was disinfected and draped. Surgical gowns and gloves were changed. After the implantation of the TJP, the gap around the prosthesis was filled with fat obtained from the abdomen to prevent heterotopic ossification (HO), thereby reducing the rate of re-ankylosis (Fig. 3C) [16, 17]. The surgical incision was closed in layers with a drain placed inside the wound. Finally, Le Fort I osteotomy was performed to restore the final occlusion. Genioplasty was selected for correction of chin retrusion and deviation if necessary. The actual surgical procedures are shown in Fig. 2B.

Postoperative and follow-up evaluations

All patients underwent CT scans within 1 week after the operation (T1) and during follow-up visits. The final follow-up visit was defined as T2. Three-dimensional reconstruction and cephalometry were performed in both T1 and T2, using the same coordinate system and measurements as in T0. The evaluations were conducted by two different experienced doctors within a 2-week time interval. The evaluations were performed as follows:

Clinical evaluation

At the last follow-up visit, the facial symmetry, MIO, and symptoms of contralateral joints of all patients were recorded (Fig. 6). Additionally, the recurrence of ankylosis was evaluated and recorded via clinical examinations and CT scans.

Jaw symmetry evaluation

The symmetry of the maxilla and mandible was measured and evaluated according to preoperative methods, including maxillary cant, chin deviation, and retrusion, and the ramus height on both sides using CT scans taken post-operation and at the last follow-up visit.

Jaw stability evaluation

Jaw stability was evaluated in terms of position and rotation between the postoperative and follow-up measurements. Distances and angles of cephalometry demonstrated the position of bones, while the angles between specific planes and coordinate reference planes demonstrated the rotation of bones.
Maxillary position was evaluated by SNA, CI distance, and maxillary cant on canines and first molars. Maxillary rotation was defined and evaluated according to angles between the occlusal plane and FH plane (MP-FH), as well as maxillary roll, pitch, and yaw angles (Table 1).
Mandibular position was evaluated by SNB, chin deviation, and retrusion. Ramus height was also measured (Co-Go), and measurements were corrected for affected sides (distance between the condyle point and anterior notch of mandibular angle) to avoid error caused by bony changes in the tuberositas masseterica region and posterior border of the ramus.

Contralateral condyle stability evaluation

The contralateral healthy condyle stability was evaluated by rotation, position, and bone remodeling. Condylar rotation was evaluated by pitch, roll, and yaw angles (as defined in Table 1 and Fig. 4); condyle position was evaluated by distances between landmarks (condylar top, medial, lateral, anterior, and posterior surface points) and X, Y, and Z planes. The remodeling of the surface bone was compared by superimposition comparison using surface-best-fit registration according to non-surgical areas of the mandible between T1 and T2. The comparison threshold was set as 2 mm [18].

Statistical analysis

Jaw position and condylar surface bony changes between T0, T1, and T2 were compared, respectively, using a paired t test with SPSS 19.0 software package (IBM, USA). A p value of less than 0.05 was considered statistically significant.

Results

Seven patients were included in the study. They were all females with an average age of 28.4 ± 15.5 years (ranging from 19 to 53 years). Their mean duration of ankylosis was 21.0 ± 11.4 years (ranging from 11 to 45 years). One patient had ankylosis due to infection, while the other six were caused by trauma. Five patients were on the right sides and two on the left. Their preoperative MIO was 11.4 ± 9.3 mm (ranging from 0 to 25 mm, shown in Table 2).
Table 2
Basic information of the patients
No
Gender
Age
Duration (years)
Cause
Side
Pre-op MIO (mm)
Operation
FU (months)
FU MIO (mm)
1
Female
30
22
Infection
Right
0
TJP + SSRO + LFI
62
32
2
Female
53
45
Trauma
Left
25
TJP + SSRO + LFI + GP
7
35
3
Female
19
13
Trauma
Right
15
TJP + SSRO + LFI
27
40
4
Female
23
20
Trauma
Right
5
TJP + SSRO + LFI + GP
23
35
5
Female
25
21
Trauma
Right
2
TJP + SSRO + LFI + GP
26
34
6
Female
28
15
Trauma
Right
15
TJP + SSRO + LFI
24
36
7
Female
21
11
Trauma
Left
18
TJP + SSRO + LFI
17
38
Average
-
28.4 ± 15.5
21.0 ± 11.4
-
-
11.4 ± 9.3*
-
26.6 ± 17.1
35.7 ± 2.6*
Pre-op pre-operation, MIO maximal incisal opening, FU follow-up, TJP total joint prosthesis, SSRO sagittal split ramus osteotomy, LFI Le Fort I osteotomy, GP genioplasty
*p = 0.000 < 0.05
Three-dimensional measurements showed that before operation, the mean chin deviation was 9.5 ± 4.2 mm (ranging from 6.0 to 15.3 mm), and retrusion was 29.1 ± 9.1 mm (ranging from 17.9 to 42.6 mm). The maxillary cant was 2.4 ± 1.2 mm on the canines (ranging from 1.3 to 4.5 mm) and 4.5 ± 2.9 mm on the first molars (ranging from 1.8 to 9.3 mm), with a cant angle of 5.1 ± 3.0° (ranging from 2.1 to 9.7°) (Table 3).
Table 3
Statistical comparison between T0, T1, and T2
 
T0
T1
T2
pT0-T1 value
pT1-T2 value
Maxillary stability
  SNA (°)
82.5 ± 4.3
80.9 ± 4.9
80.2 ± 5.4
0.166
0.068
  CI (mm)
54.0 ± 2.6
52.7 ± 1.6
53.2 ± 1.5
0.214
0.831
  Cant 3 (mm)
2.4 ± 1.2
0.7 ± 0.5
0.6 ± 0.4
0.019*
0.227
  Cant 6 (mm)
4.5 ± 2.9
1.0 ± 0.6
1.7 ± 0.9
0.030*
0.071
  Maxilla cant angle (°)
5.1 ± 3.0
1.1 ± 0.6
2.0 ± 0.9
0.022*
0.051
  MP-FH (°)
18.7 ± 1.6
12.1 ± 3.3
13.0 ± 2.2
0.016*
0.561
  Maxilla-pitch (°)
-
80.6 ± 5.0
79.1 ± 5.1
-
0.188
  Maxilla-roll (°)
-
88.8 ± 0.6
88.1 ± 1.2
-
0.057
  Maxilla-yaw (°)
-
2.8 ± 1.8
3.5 ± 3.0
-
0.385
Mandiblular stability
  SNB (°)
70.7 ± 6.3
72.4 ± 4.2
73.0 ± 4.8
0.214
0.289
  Chin deviation (mm)
9.5 ± 4.2
1.9 ± 1.4
1.7 ± 1.3
0.015*
0.442
  Chin retrusion (mm)
29.1 ± 9.1
23.2 ± 7.3
22.4 ± 7.8
0.006*
0.517
Joint stability
  RH-affected side (mm)
42.4 ± 14.8
51.3 ± 4.7
-
0.174
-
  RH non-affected side (mm)
57.4 ± 4.9
57.2 ± 4.5
57.3 ± 5.9
0.480
0.884
  RH′ affected side (mm)
-
54.8 ± 2.9
57.2 ± 6.2
-
0.804
  Co-X (mm, non-affected side)
-
1.6 ± 1.3
2.1 ± 2.2
-
0.332
  Co-Y (mm, non-affected side)
-
52.4 ± 3.5
42.5 ± 19.8
-
0.265
  Co-Z (mm, non-affected side)
-
69.6 ± 4.5
67.9 ± 5.5
-
0.275
  CoLat-Y (mm, non-affected side)
-
58.6 ± 4.3
47.7 ± 22.3
-
0.266
  CoMed-Y (mm, non-affected side)
-
42.3 ± 1.0
33.7 ± 15.3
-
0.276
  CoA-Z (mm, non-affected side)
-
64.4 ± 4.9
62.1 ± 5.7
-
0.131
  CoP-Z (mm, non-affected side)
-
74.4 ± 3.5
72.6 ± 4.9
-
0.271
  Condyle roll (°, non-affected side)
-
80.3 ± 5.7
81.8 ± 6.2
-
0.563
  Condyle yaw (°, non-affected side)
-
12.7 ± 3.3
8.1 ± 3.6
-
0.122
  Condyle pitch (°, non-affected side)
-
6.0 ± 3.5
5.6 ± 3.1
-
0.835
*p < 0.05
After operation, the ramus height on the affected side increased by 9.2 ± 11.7 mm, the chin deviation was corrected 7.6 ± 4.1 mm (p = 0.015), and advanced 5.9 ± 2.5 mm (p = 0.006) significantly. Maxillary cant was corrected 1.7 ± 1.0 mm at the canines (p = 0.02) and 3.5 ± 2.4 mm at the first molars (p = 0.03). The maxillary cant angle was corrected 4.0 ± 2.4° (p = 0.02) (Table 3).
After an average of 29.0 ± 20.1 months follow-up (ranging from 7 to 62 months), no recurrence of ankylosis occurred. MIO was significantly improved to 35.7 ± 2.6 mm (ranging from 32 to 40 mm, p = 0.000 < 0.05). No patient reported joint pain or occlusion changes. There were no significant position changes of both the maxilla and the mandible (p > 0.05, Table 3). The contralateral healthy condyle had 4.6 ± 5.2° of yaw rotation, but the difference was not statistically significant (p = 0.122 > 0.05, Table 3). There was no obvious condylar surface bone resorption at the last follow-up (Fig. 5).

Discussion

There are two types of TMJA according to our previous classification for treatment method selection: with and without residual condyle [3]. For the residual condyle which is larger than one-half of the healthy side, lateral gap arthroplasty (LAP) is selected, while for the small or no residual condyle, autogenous bone graft or TJP is recommended for joint reconstruction. Compared with commonly used autogenous bone graft for joint reconstruction such as costochondral graft (CCG), coronoid process graft (CPG), and distraction osteogenesis (DO), which had excellent histocompatibility and reasonable cost [5], TJP is more and more used because of stability and predictability, especially for patients who need large mandibular advancement to correct jaw deformity [19]. We have reported using standard TJP and Le Fort I osteotomy simultaneously for bilateral TMJA with severe mandibular deficiency [14]. Their mean chin advancement was 10.19 mm with significantly improved SNB and ramus heights. After a mean follow-up period of 22 months, the results were stable.
However, for UTMJAJD patients, the outcome of joint reconstruction with orthognathic surgery to the contralateral healthy condyle is unknown. It was reported that about 30% of patients who received TJP treatment experienced symptoms on the contralateral temporomandibular joint [20]. In patients with jaw asymmetry, the articular disc experiences an overload of force, which could lead to disc displacement [21]. After BSSO, the forces on the condyles may become balanced due to the correction of facial asymmetry. But in UTMJAJD patients, there are currently no reports on the influence of TJP implantation with simultaneous SSRO and Le Fort I osteotomy on the contralateral healthy condyle. Results of our study showed an average mandibular ramus elongation of 9.2 ± 11.7 mm, with chin deviation correction of 7.6 ± 4.1 mm, and chin advancement of 5.9 ± 2.5 mm. However, these significant changes did not lead to condylar resorption on the contralateral sides, and no positional or rotational changes were found in follow-ups. The possible reason for this may be that SSRO reduces the force accumulation on the healthy side condyle.
For patients with TMJA and mild-to-moderate deformities, a one-stage surgical procedure can be a suitable option, with the advantages of immediate satisfaction and low cost. However, in those cases with severe dentofacial deformities, staged treatment is necessary for optimal results [5]. In this study, unilateral TJP reconstruction with simultaneous SSRO and Le Fort I osteotomy had a stable outcome in UTMJAJD patients, which can be attributed to the application of CAS technique. First, 3D cephalometry was performed to thoroughly evaluate facial asymmetry, which led to a more accurate treatment plan. There were differences in surgical planning and operation procedures for these patients. In virtual surgery, the level of the occlusal plane was the first step. Then, the ankylotic bone release, TJP implantation, and SSRO were designed. However, during the actual operation, the ankylosis release was the first step, in order to remove the bony mass and to gain mobility of the mandible, so a mandible-first procedure was necessary. After removing the ankylosed bony mass, SSRO was performed on the contralateral side. The intermediate occlusal splint determined by initial maxillary position and final mandibular position was then inserted prior to SSRO fixation and implantation of TJP. Additionally, the installation of the prosthesis and Le Fort I osteotomy were guided by custom-made templates, which improved the surgical accuracy.
We used the method as we previously reported to assess jaw stability after simultaneous TMJ and orthognathic surgery, which includes jaw position, rotation, contralateral healthy condyle position, and surface bone remodeling [18]. The results showed that at the last follow-up, jaw and condylar position were stable, and no obvious bone resorption happened on the condylar bone surface (Fig. 6). There were no patients that developed recurrent ankylosis. The occlusion was stable. However, being a preliminary study, the sample size and follow-up period were limited. It is well known that TMJ prostheses work over a few years but often not for 10 and more years due to several factors [22]. Infection is the main cause of prosthesis failure within the first 6 months after surgery. HO formation, wear or fracture of the prosthesis, foreign body reaction, and allergy to the prosthesis are the common reasons for prosthesis revision [23]. The patients should be informed and understand the necessary of revision surgery to extend the implantation periods [22]. In this study, the results provide encouragement for the future extension of this simultaneous TJR and orthognathic treatment method to a larger number of patients.
In conclusion, the combination of TJP, SSRO, and Le Fort I osteotomy for the simultaneous treatment of UTMJAJD is reliable and effective.

Declarations

Competing interests

The authors declare no competing interests.
Human tissues: The collection of all specimens was authorized by the patients and approved by the Ethics Committee of Shanghai Ninth People’s Hospital (Shanghai, China) (SH9H-2018-T37-1). Informed consent forms were signed before surgery.

Conflict of interest

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Literatur
1.
Zurück zum Zitat Sawhney CP (1986) Bony ankylosis of the temporomandibular joint: follow-up of 70 patients treated with arthroplasty and acrylic spacer interposition. Plast Recon Surg 77(1):29–40CrossRef Sawhney CP (1986) Bony ankylosis of the temporomandibular joint: follow-up of 70 patients treated with arthroplasty and acrylic spacer interposition. Plast Recon Surg 77(1):29–40CrossRef
2.
Zurück zum Zitat Roychoudhury A, Parkash H, Trikha A (1999) Functional restoration by gap arthroplasty in temporomandibular joint ankylosis: a report of 50 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87(2):166–169CrossRefPubMed Roychoudhury A, Parkash H, Trikha A (1999) Functional restoration by gap arthroplasty in temporomandibular joint ankylosis: a report of 50 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87(2):166–169CrossRefPubMed
3.
Zurück zum Zitat He D, Yang C, Chen M, Zhang X, Qiu Y, Yang X, Li L, Fang B (2011) Traumatic temporomandibular joint ankylosis: our classification and treatment experience. J Oral Maxillofac Surg 69(6):1600–1607CrossRefPubMed He D, Yang C, Chen M, Zhang X, Qiu Y, Yang X, Li L, Fang B (2011) Traumatic temporomandibular joint ankylosis: our classification and treatment experience. J Oral Maxillofac Surg 69(6):1600–1607CrossRefPubMed
4.
Zurück zum Zitat Fivez S, Politis C, Dormaar JT (2020) Cadenas de Llano-Perula M: Surgical and orthodontic approach to temporomandibular joint ankylosis after ear infection: a case series. J Oral Maxillofac Surg 78(12):2235–2246CrossRefPubMed Fivez S, Politis C, Dormaar JT (2020) Cadenas de Llano-Perula M: Surgical and orthodontic approach to temporomandibular joint ankylosis after ear infection: a case series. J Oral Maxillofac Surg 78(12):2235–2246CrossRefPubMed
5.
Zurück zum Zitat Zhu S, Wang D, Yin Q, Hu J (2013) Treatment guidelines for temporomandibular joint ankylosis with secondary dentofacial deformities in adults. J Craniomaxillofac Surg 41(7):e117-127CrossRefPubMed Zhu S, Wang D, Yin Q, Hu J (2013) Treatment guidelines for temporomandibular joint ankylosis with secondary dentofacial deformities in adults. J Craniomaxillofac Surg 41(7):e117-127CrossRefPubMed
6.
Zurück zum Zitat Lu C, Huang D, He D, Yang C, Yuan J (2014) Digital occlusal splint for condylar reconstruction in children with temporomandibular joint ankylosis. J Oral Maxillofac Surg 72(8):1585–1593CrossRefPubMed Lu C, Huang D, He D, Yang C, Yuan J (2014) Digital occlusal splint for condylar reconstruction in children with temporomandibular joint ankylosis. J Oral Maxillofac Surg 72(8):1585–1593CrossRefPubMed
7.
Zurück zum Zitat Li Z, Zhang W, Li ZB (2009) Induction of traumatic temporomandibular joint ankylosis in growing rats: a preliminary experimental study. Dent Traumatol 25(1):136–141CrossRefPubMed Li Z, Zhang W, Li ZB (2009) Induction of traumatic temporomandibular joint ankylosis in growing rats: a preliminary experimental study. Dent Traumatol 25(1):136–141CrossRefPubMed
8.
Zurück zum Zitat Kaban LB, Bouchard C, Troulis MJ (2009) A protocol for management of temporomandibular joint ankylosis in children. J Oral Maxillofac Surg 67(9):1966–1978CrossRefPubMed Kaban LB, Bouchard C, Troulis MJ (2009) A protocol for management of temporomandibular joint ankylosis in children. J Oral Maxillofac Surg 67(9):1966–1978CrossRefPubMed
9.
Zurück zum Zitat Rozanski C, Wood K, Sanati-Mehrizy P, Xu H, Taub PJ (2019) Ankylosis of the temporomandibular joint in pediatric patients. J Craniofac Surg 30(4):1033–1038CrossRefPubMed Rozanski C, Wood K, Sanati-Mehrizy P, Xu H, Taub PJ (2019) Ankylosis of the temporomandibular joint in pediatric patients. J Craniofac Surg 30(4):1033–1038CrossRefPubMed
10.
Zurück zum Zitat Shaeran TAT, Samsudin AR (2019) Temporomandibular joint ankylosis leading to obstructive sleep apnea. J Craniofac Surg 30(8):e714–e717CrossRefPubMed Shaeran TAT, Samsudin AR (2019) Temporomandibular joint ankylosis leading to obstructive sleep apnea. J Craniofac Surg 30(8):e714–e717CrossRefPubMed
11.
Zurück zum Zitat Sharma VK, Rattan V, Rai S, Malhi P (2020) Assessment of paediatric quality of life in temporomandibular joint ankylosis patients after interpositional arthroplasty: a pilot study. Int J Oral Maxillofac Surg 49(2):244–249CrossRefPubMed Sharma VK, Rattan V, Rai S, Malhi P (2020) Assessment of paediatric quality of life in temporomandibular joint ankylosis patients after interpositional arthroplasty: a pilot study. Int J Oral Maxillofac Surg 49(2):244–249CrossRefPubMed
12.
Zurück zum Zitat Wolford L, Movahed R, Teschke M, Fimmers R, Havard D, Schneiderman E (2016) Temporomandibular joint ankylosis can be successfully treated with tmj concepts patient-fitted total joint prosthesis and autogenous fat grafts. J Oral Maxillofac Surg 74(6):1215–1227CrossRefPubMed Wolford L, Movahed R, Teschke M, Fimmers R, Havard D, Schneiderman E (2016) Temporomandibular joint ankylosis can be successfully treated with tmj concepts patient-fitted total joint prosthesis and autogenous fat grafts. J Oral Maxillofac Surg 74(6):1215–1227CrossRefPubMed
13.
Zurück zum Zitat Roychoudhury A, Yadav P, Alagarsamy R, Bhutia O, Goswami D (2021) Outcome of stock total joint replacement with fat grafting in adult temporomandibular joint ankylosis patients. J Oral Maxillofac Surg 79(1):75–87CrossRefPubMed Roychoudhury A, Yadav P, Alagarsamy R, Bhutia O, Goswami D (2021) Outcome of stock total joint replacement with fat grafting in adult temporomandibular joint ankylosis patients. J Oral Maxillofac Surg 79(1):75–87CrossRefPubMed
14.
Zurück zum Zitat Hu Y, Zhang L, He D, Yang C, Chen M, Zhang S, Li H, Ellis E III (2017) Simultaneous treatment of temporomandibular joint ankylosis with severe mandibular deficiency by standard TMJ prosthesis. Sci Rep 7:45271CrossRefPubMedPubMedCentral Hu Y, Zhang L, He D, Yang C, Chen M, Zhang S, Li H, Ellis E III (2017) Simultaneous treatment of temporomandibular joint ankylosis with severe mandibular deficiency by standard TMJ prosthesis. Sci Rep 7:45271CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Qiu YT, Yang C, Chen MJ (2010) Endoscopically assisted reconstruction of the mandibular condyle with a costochondral graft through a modified preauricular approach. Br J Oral Maxillofac Surg 48(6):443–447CrossRefPubMed Qiu YT, Yang C, Chen MJ (2010) Endoscopically assisted reconstruction of the mandibular condyle with a costochondral graft through a modified preauricular approach. Br J Oral Maxillofac Surg 48(6):443–447CrossRefPubMed
16.
Zurück zum Zitat Ding R, Lu C, Zhao J, He D (2022) Heterotopic ossification after alloplastic temporomandibular joint replacement: a case cohort study. BMC Musculoskelet Disord 23(1):638CrossRefPubMedPubMedCentral Ding R, Lu C, Zhao J, He D (2022) Heterotopic ossification after alloplastic temporomandibular joint replacement: a case cohort study. BMC Musculoskelet Disord 23(1):638CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Wolford LM, Morales-Ryan CA, Morales PG, Cassano DS (2008) Autologous fat grafts placed around temporomandibular joint total joint prostheses to prevent heterotopic bone formation. Proc (Bayl Univ Med Cent) 21(3):248–254PubMed Wolford LM, Morales-Ryan CA, Morales PG, Cassano DS (2008) Autologous fat grafts placed around temporomandibular joint total joint prostheses to prevent heterotopic bone formation. Proc (Bayl Univ Med Cent) 21(3):248–254PubMed
18.
Zurück zum Zitat Hua J, Lu C, Zhao J, Yang Z, He D (2022) Disc repositioning by open suturing vs. mini-screw anchor: stability analysis when combined with orthognathic surgery for hypoplastic condyles. BMC Musculoskelet Disord 23(1):387CrossRefPubMedPubMedCentral Hua J, Lu C, Zhao J, Yang Z, He D (2022) Disc repositioning by open suturing vs. mini-screw anchor: stability analysis when combined with orthognathic surgery for hypoplastic condyles. BMC Musculoskelet Disord 23(1):387CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Nadershah M, Mehra P (2015) Orthognathic surgery in the presence of temporomandibular dysfunction: what happens next? Oral Maxillofac Surg Clin North Am 27(1):11–26CrossRefPubMed Nadershah M, Mehra P (2015) Orthognathic surgery in the presence of temporomandibular dysfunction: what happens next? Oral Maxillofac Surg Clin North Am 27(1):11–26CrossRefPubMed
20.
Zurück zum Zitat Zou L, He D, Ellis E (2018) A comparison of clinical follow-up of different total temporomandibular joint replacement prostheses: a systematic review and meta-analysis. J Oral Maxillofac Surg 76(2):294–303CrossRefPubMed Zou L, He D, Ellis E (2018) A comparison of clinical follow-up of different total temporomandibular joint replacement prostheses: a systematic review and meta-analysis. J Oral Maxillofac Surg 76(2):294–303CrossRefPubMed
21.
Zurück zum Zitat Chang AR, Han JJ, Kim DS, Yi WJ, Hwang SJ (2015) Evaluation of intra-articular distance narrowing during temporomandibular joint movement in patients with facial asymmetry using 3-dimensional computed tomography image and tracking camera system. J Craniomaxillofac Surg 43(3):342–348CrossRefPubMed Chang AR, Han JJ, Kim DS, Yi WJ, Hwang SJ (2015) Evaluation of intra-articular distance narrowing during temporomandibular joint movement in patients with facial asymmetry using 3-dimensional computed tomography image and tracking camera system. J Craniomaxillofac Surg 43(3):342–348CrossRefPubMed
22.
Zurück zum Zitat Lima F, Rios LGC, Paranhos LR, Vieira WA, Zanetta-Barbosa D (2023) Survival of temporomandibular total joint replacement: a systematic review and meta-analysis. J Oral Rehabil Lima F, Rios LGC, Paranhos LR, Vieira WA, Zanetta-Barbosa D (2023) Survival of temporomandibular total joint replacement: a systematic review and meta-analysis. J Oral Rehabil
23.
Zurück zum Zitat Gakhal MK, Gupta B, Sidebottom AJ (2020) Analysis of outcomes after revision replacement of failed total temporomandibular joint prostheses. Br J Oral Maxillofac Surg 58(2):220–224CrossRefPubMed Gakhal MK, Gupta B, Sidebottom AJ (2020) Analysis of outcomes after revision replacement of failed total temporomandibular joint prostheses. Br J Oral Maxillofac Surg 58(2):220–224CrossRefPubMed
Metadaten
Titel
Simultaneous standard total joint prosthesis reconstruction with SSRO and Le Fort I osteotomy in the treatment of unilateral temporomandibular joint ankylosis with jaw deformity: a case cohort study
verfasst von
Dong Huang
Luxiang Zou
Chuan Lu
Jieyun Zhao
Dongmei He
Chi Yang
Publikationsdatum
01.03.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Oral Investigations / Ausgabe 3/2024
Print ISSN: 1432-6981
Elektronische ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-024-05543-3

Weitere Artikel der Ausgabe 3/2024

Clinical Oral Investigations 3/2024 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Zahnmedizin

Bestellen Sie unseren kostenlosen Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.