Skip to main content
Erschienen in: Inflammation 5/2023

25.07.2023 | REVIEW

The Hepatic Nerves Regulated Inflammatory Effect in the Process of Liver Injury: Is Nerve the Key Treating Target for Liver Inflammation?

verfasst von: Kaili Yang, Zebing Huang, Shuyi Wang, Zhihong Zhao, Panpan Yi, Yayu Chen, Meifang Xiao, Jun Quan, Xingwang Hu

Erschienen in: Inflammation | Ausgabe 5/2023

Einloggen, um Zugang zu erhalten

Abstract

Liver injury is a common pathological basis for various liver diseases. Chronic liver injury is often an important initiating factor in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Currently, hepatitis A and E infections are the most common causes of acute liver injury worldwide, whereas drug toxicity (paracetamol overdose) in the USA and part of Western Europe. In recent years, chronic liver injury has become a common disease that harms human health. Meanwhile, the main causes of chronic liver injury are viral hepatitis (B, C) and long-term alcohol consumption worldwide. During the process of liver injury, massive inflammatory cytokines are stimulated by these hazardous factors, leading to a systemic inflammatory response syndrome, followed by a compensatory anti-inflammatory response, which causes immune cell dysfunction and sepsis, subsequent multi-organ failure. Cytokine release and immune cell infiltration-mediated aseptic inflammation are the most important features of the pathobiology of liver failure. From this perspective, diminishing the onset and progression of liver inflammation is of clinical importance in the treatment of liver injury. Although many studies have hinted at the critical role of nerves in regulating inflammation, there largely remains undetermined how hepatic nerves mediate immune inflammation and how the inflammatory factors released by these nerves are involved in the process of liver injury. Therefore, the purpose of this article is to summarize previous studies in the field related to hepatic nerve and inflammation as well as future perspectives on the aforementioned questions. Our findings were presented in three aspects: types of nerve distribution in the liver, how these nerves regulate immunity, and the role of liver nerves in hepatitis and liver failure.
Literatur
1.
Zurück zum Zitat Miller, B.M., I.M. Oderberg, and W. Goessling. 2021. Hepatic nervous system in development, regeneration, and disease. Hepatology 74: 3513–3522.PubMed Miller, B.M., I.M. Oderberg, and W. Goessling. 2021. Hepatic nervous system in development, regeneration, and disease. Hepatology 74: 3513–3522.PubMed
2.
Zurück zum Zitat Pereira, M.R., and P.E. Leite. 2016. The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. Journal of Cellular Physiology 231: 1862–1869.PubMed Pereira, M.R., and P.E. Leite. 2016. The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. Journal of Cellular Physiology 231: 1862–1869.PubMed
3.
Zurück zum Zitat Terrando, N., T. Yang, J.K. Ryu, P.T. Newton, C. Monaco, M. Feldmann, et al. 2015. Stimulation of the alpha7 nicotinic acetylcholine receptor protects against neuroinflammation after tibia fracture and endotoxemia in mice. Molecular Medicine 20: 667–675.PubMedPubMedCentral Terrando, N., T. Yang, J.K. Ryu, P.T. Newton, C. Monaco, M. Feldmann, et al. 2015. Stimulation of the alpha7 nicotinic acetylcholine receptor protects against neuroinflammation after tibia fracture and endotoxemia in mice. Molecular Medicine 20: 667–675.PubMedPubMedCentral
4.
Zurück zum Zitat Sanchez-Aleman, E., A. Quintanar-Stephano, G. Escobedo, R. Campos-Esparza Mdel, R. Campos-Rodriguez, and J. Ventura-Juarez. 2015. Vagotomy induces deregulation of the inflammatory response during the development of amoebic liver abscess in hamsters. NeuroImmunoModulation 22 (3): 166–180.PubMed Sanchez-Aleman, E., A. Quintanar-Stephano, G. Escobedo, R. Campos-Esparza Mdel, R. Campos-Rodriguez, and J. Ventura-Juarez. 2015. Vagotomy induces deregulation of the inflammatory response during the development of amoebic liver abscess in hamsters. NeuroImmunoModulation 22 (3): 166–180.PubMed
5.
Zurück zum Zitat de Jonge, W.J., E.P. van der Zanden, F.O. The, M.F. Bijlsma, D.J. van Westerloo, R.J. Bennink, et al. 2005. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nature Immunology 6: 844–851.PubMed de Jonge, W.J., E.P. van der Zanden, F.O. The, M.F. Bijlsma, D.J. van Westerloo, R.J. Bennink, et al. 2005. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nature Immunology 6: 844–851.PubMed
6.
Zurück zum Zitat Nishio, T., K. Taura, K. Iwaisako, Y. Koyama, K. Tanabe, G. Yamamoto, et al. 2017. Hepatic vagus nerve regulates Kupffer cell activation via alpha7 nicotinic acetylcholine receptor in nonalcoholic steatohepatitis. Journal of Gastroenterology 52: 965–976.PubMed Nishio, T., K. Taura, K. Iwaisako, Y. Koyama, K. Tanabe, G. Yamamoto, et al. 2017. Hepatic vagus nerve regulates Kupffer cell activation via alpha7 nicotinic acetylcholine receptor in nonalcoholic steatohepatitis. Journal of Gastroenterology 52: 965–976.PubMed
7.
Zurück zum Zitat Leroux, A., G. Ferrere, V. Godie, F. Cailleux, M.L. Renoud, F. Gaudin, et al. 2012. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. Journal of Hepatology 57: 141–149.PubMed Leroux, A., G. Ferrere, V. Godie, F. Cailleux, M.L. Renoud, F. Gaudin, et al. 2012. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. Journal of Hepatology 57: 141–149.PubMed
8.
Zurück zum Zitat Diehl, A.M., and C. Day. 2017. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. New England Journal of Medicine 377: 2063–2072.PubMed Diehl, A.M., and C. Day. 2017. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. New England Journal of Medicine 377: 2063–2072.PubMed
9.
Zurück zum Zitat Lau, J.K., X. Zhang, and J. Yu. 2017. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances. The Journal of Pathology 241: 36–44.PubMed Lau, J.K., X. Zhang, and J. Yu. 2017. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances. The Journal of Pathology 241: 36–44.PubMed
10.
Zurück zum Zitat Tilg, H., and A.R. Moschen. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology 52: 1836–1846.PubMed Tilg, H., and A.R. Moschen. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology 52: 1836–1846.PubMed
11.
Zurück zum Zitat Pavlov, V.A., and K.J. Tracey. 2012. The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nature Reviews. Endocrinology 8: 743–754.PubMedPubMedCentral Pavlov, V.A., and K.J. Tracey. 2012. The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nature Reviews. Endocrinology 8: 743–754.PubMedPubMedCentral
12.
Zurück zum Zitat Lambert, G.W., N.E. Straznicky, E.A. Lambert, J.B. Dixon, and M.P. Schlaich. 2010. Sympathetic nervous activation in obesity and the metabolic syndrome–causes, consequences and therapeutic implications. Pharmacology & Therapeutics 126: 159–172. Lambert, G.W., N.E. Straznicky, E.A. Lambert, J.B. Dixon, and M.P. Schlaich. 2010. Sympathetic nervous activation in obesity and the metabolic syndrome–causes, consequences and therapeutic implications. Pharmacology & Therapeutics 126: 159–172.
13.
Zurück zum Zitat Hurr, C., H. Simonyan, D.A. Morgan, K. Rahmouni, and C.N. Young. 2019. Liver sympathetic denervation reverses obesity-induced hepatic steatosis. Journal of Physiology 597: 4565–4580.PubMed Hurr, C., H. Simonyan, D.A. Morgan, K. Rahmouni, and C.N. Young. 2019. Liver sympathetic denervation reverses obesity-induced hepatic steatosis. Journal of Physiology 597: 4565–4580.PubMed
14.
Zurück zum Zitat Lyudmila, V., S.I. Borovikova. 2019.Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 458–62. Lyudmila, V., S.I. Borovikova. 2019.Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 458–62.
15.
Zurück zum Zitat Torres, H., C. Huesing, D.H. Burk, A.J.R. Molinas, W.L. Neuhuber, H.R. Berthoud, et al. 2021. Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 321: R328–R337.PubMedPubMedCentral Torres, H., C. Huesing, D.H. Burk, A.J.R. Molinas, W.L. Neuhuber, H.R. Berthoud, et al. 2021. Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 321: R328–R337.PubMedPubMedCentral
16.
Zurück zum Zitat Jensen, K.J., G. Alpini, and S. Glaser. 2013. Hepatic nervous system and neurobiology of the liver. Comprehensive Physiology 3: 655–665.PubMedPubMedCentral Jensen, K.J., G. Alpini, and S. Glaser. 2013. Hepatic nervous system and neurobiology of the liver. Comprehensive Physiology 3: 655–665.PubMedPubMedCentral
17.
Zurück zum Zitat McCuskey, R.S. 2004. Anatomy of efferent hepatic nerves. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 280: 821–826.PubMed McCuskey, R.S. 2004. Anatomy of efferent hepatic nerves. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 280: 821–826.PubMed
18.
Zurück zum Zitat Pavlov, V.A., and K.J. Tracey. 2017. Neural regulation of immunity: Molecular mechanisms and clinical translation. Nature Neuroscience 20: 156–166.PubMed Pavlov, V.A., and K.J. Tracey. 2017. Neural regulation of immunity: Molecular mechanisms and clinical translation. Nature Neuroscience 20: 156–166.PubMed
19.
Zurück zum Zitat Metz, C.N., and V.A. Pavlov. 2018. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. American Journal of Physiology. Gastrointestinal and Liver Physiology 315: 651–658. Metz, C.N., and V.A. Pavlov. 2018. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. American Journal of Physiology. Gastrointestinal and Liver Physiology 315: 651–658.
20.
Zurück zum Zitat Chavan, S.S., V.A. Pavlov, and K.J. Tracey. 2017. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 46: 927–942.PubMedPubMedCentral Chavan, S.S., V.A. Pavlov, and K.J. Tracey. 2017. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 46: 927–942.PubMedPubMedCentral
21.
Zurück zum Zitat Rosas-Ballina, M., and K.J. Tracey. 2009. Cholinergic control of inflammation. Journal of Internal Medicine 265 (6): 663–679.PubMedPubMedCentral Rosas-Ballina, M., and K.J. Tracey. 2009. Cholinergic control of inflammation. Journal of Internal Medicine 265 (6): 663–679.PubMedPubMedCentral
22.
Zurück zum Zitat Bonaz, B., V. Sinniger, S. Pellissier. 2019. Vagus nerve stimulation at the interface of brain-gut interactions. Cold Spring Harbor Perspectives in Medicine 9(8). Bonaz, B., V. Sinniger, S. Pellissier. 2019. Vagus nerve stimulation at the interface of brain-gut interactions. Cold Spring Harbor Perspectives in Medicine 9(8).
23.
Zurück zum Zitat Fonseca, R.C., G.S. Bassi, C.C. Brito, L.B. Rosa, B.A. David, A.M. Araujo, et al. 2019. Vagus nerve regulates the phagocytic and secretory activity of resident macrophages in the liver. Brain, Behavior, and Immunity 81: 444–454.PubMedPubMedCentral Fonseca, R.C., G.S. Bassi, C.C. Brito, L.B. Rosa, B.A. David, A.M. Araujo, et al. 2019. Vagus nerve regulates the phagocytic and secretory activity of resident macrophages in the liver. Brain, Behavior, and Immunity 81: 444–454.PubMedPubMedCentral
24.
Zurück zum Zitat Fernandez, R., G. Nardocci, C. Navarro, E.P. Reyes, C. Acuna-Castillo, P.P. Cortes. 2014. Neural reflex regulation of systemic inflammation: potential new targets for sepsis therapy. Frontiers in Physiology 5:489–98. Fernandez, R., G. Nardocci, C. Navarro, E.P. Reyes, C. Acuna-Castillo, P.P. Cortes. 2014. Neural reflex regulation of systemic inflammation: potential new targets for sepsis therapy. Frontiers in Physiology 5:489–98.
25.
Zurück zum Zitat Kim, H.H., Y.R. Shim, S.E. Choi, M.H. Kim, G. Lee, H.J. You, et al. 2023. Catecholamine induces Kupffer cell apoptosis via growth differentiation factor 15 in alcohol-associated liver disease. Experimental & Molecular Medicine 55: 158–170. Kim, H.H., Y.R. Shim, S.E. Choi, M.H. Kim, G. Lee, H.J. You, et al. 2023. Catecholamine induces Kupffer cell apoptosis via growth differentiation factor 15 in alcohol-associated liver disease. Experimental & Molecular Medicine 55: 158–170.
26.
Zurück zum Zitat Chida, Y., N. Sudo, A. Takaki, and C. Kubo. 2005. The hepatic sympathetic nerve plays a critical role in preventing Fas induced liver injury in mice. Gut 54: 994–1002.PubMedPubMedCentral Chida, Y., N. Sudo, A. Takaki, and C. Kubo. 2005. The hepatic sympathetic nerve plays a critical role in preventing Fas induced liver injury in mice. Gut 54: 994–1002.PubMedPubMedCentral
27.
Zurück zum Zitat Pavlov, V.A., S.S. Chavan, and K.J. Tracey. 2018. Molecular and functional neuroscience in immunity. Annual Review of Immunology 36: 783–812.PubMedPubMedCentral Pavlov, V.A., S.S. Chavan, and K.J. Tracey. 2018. Molecular and functional neuroscience in immunity. Annual Review of Immunology 36: 783–812.PubMedPubMedCentral
28.
Zurück zum Zitat Stoyanova, I.I., and M.V. Gulubova. 1998. Peptidergic nerve fibres in the human liver. Acta Histochemica 100: 245–256.PubMed Stoyanova, I.I., and M.V. Gulubova. 1998. Peptidergic nerve fibres in the human liver. Acta Histochemica 100: 245–256.PubMed
29.
Zurück zum Zitat Streba, L.A., C.C. Vere, A.G. Ionescu, C.T. Streba, and I. Rogoveanu. 2014. Role of intrahepatic innervation in regulating the activity of liver cells. World Journal of Hepatology 6: 137–143.PubMedPubMedCentral Streba, L.A., C.C. Vere, A.G. Ionescu, C.T. Streba, and I. Rogoveanu. 2014. Role of intrahepatic innervation in regulating the activity of liver cells. World Journal of Hepatology 6: 137–143.PubMedPubMedCentral
30.
Zurück zum Zitat Stoyanova, I.I., and M.V. Gulubova. 2000. Immunocytochemical study on the liver innervation in patients with cirrhosis. Acta Histochemica 102: 391–402.PubMed Stoyanova, I.I., and M.V. Gulubova. 2000. Immunocytochemical study on the liver innervation in patients with cirrhosis. Acta Histochemica 102: 391–402.PubMed
31.
Zurück zum Zitat Marra, F., and F. Tacke. 2014. Roles for chemokines in liver disease. Gastroenterology 147: 577–594.PubMed Marra, F., and F. Tacke. 2014. Roles for chemokines in liver disease. Gastroenterology 147: 577–594.PubMed
32.
Zurück zum Zitat Liu, M., S. Cao, L. He, J. Gao, J.P. Arab, H. Cui, et al. 2021. Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis. Nature Communications 12: 14.PubMedPubMedCentral Liu, M., S. Cao, L. He, J. Gao, J.P. Arab, H. Cui, et al. 2021. Super enhancer regulation of cytokine-induced chemokine production in alcoholic hepatitis. Nature Communications 12: 14.PubMedPubMedCentral
33.
Zurück zum Zitat Heydtmann, M., P.F. Lalor, J.A. Eksteen, S.G. Hubscher, M. Briskin, and D.H. Adams. 2005. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. The Journal of Immunology 174: 1055–1062.PubMed Heydtmann, M., P.F. Lalor, J.A. Eksteen, S.G. Hubscher, M. Briskin, and D.H. Adams. 2005. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. The Journal of Immunology 174: 1055–1062.PubMed
34.
Zurück zum Zitat Nagata, N., G. Chen, L. Xu, and H. Ando. 2022. An update on the chemokine system in the development of NAFLD. Medicina (Kaunas) 58(761–771). Nagata, N., G. Chen, L. Xu, and H. Ando. 2022. An update on the chemokine system in the development of NAFLD. Medicina (Kaunas) 58(761–771).
35.
Zurück zum Zitat Landsman, L., L. Bar-On, A. Zernecke, K.W. Kim, R. Krauthgamer, E. Shagdarsuren, et al. 2009. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113: 963–972.PubMed Landsman, L., L. Bar-On, A. Zernecke, K.W. Kim, R. Krauthgamer, E. Shagdarsuren, et al. 2009. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113: 963–972.PubMed
36.
Zurück zum Zitat Roh, Y.S., and E. Seki. 2018. Chemokines and chemokine receptors in the development of NAFLD. Advances in Experimental Medicine and Biology 1061: 45–53.PubMed Roh, Y.S., and E. Seki. 2018. Chemokines and chemokine receptors in the development of NAFLD. Advances in Experimental Medicine and Biology 1061: 45–53.PubMed
37.
Zurück zum Zitat Aoyama, T., S. Inokuchi, D.A. Brenner, and E. Seki. 2010. CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology 52: 1390–1400.PubMed Aoyama, T., S. Inokuchi, D.A. Brenner, and E. Seki. 2010. CX3CL1-CX3CR1 interaction prevents carbon tetrachloride-induced liver inflammation and fibrosis in mice. Hepatology 52: 1390–1400.PubMed
38.
Zurück zum Zitat Chaudhry, S., J. Emond, and A. Griesemer. 2019. Immune cell trafficking to the liver. Transplantation 103: 1323–1337.PubMedPubMedCentral Chaudhry, S., J. Emond, and A. Griesemer. 2019. Immune cell trafficking to the liver. Transplantation 103: 1323–1337.PubMedPubMedCentral
39.
Zurück zum Zitat Kandilis, A.N., I.P. Papadopoulou, J. Koskinas, G. Sotiropoulos, and D.G. Tiniakos. 2015. Liver innervation and hepatic function: New insights. Journal of Surgical Research 194: 511–519.PubMed Kandilis, A.N., I.P. Papadopoulou, J. Koskinas, G. Sotiropoulos, and D.G. Tiniakos. 2015. Liver innervation and hepatic function: New insights. Journal of Surgical Research 194: 511–519.PubMed
40.
Zurück zum Zitat Ishii, K., M. Shimizu, H. Karube, A. Shibuya, H. Shibata, M. Okudaira, H. Nagata, and M. Tsuchiya. 1992. Inhibitory effect of noradrenaline on acute liver injury induced by carbon tetrachloride in the rat. Journal of Autonomic Nervous System. Ishii, K., M. Shimizu, H. Karube, A. Shibuya, H. Shibata, M. Okudaira, H. Nagata, and M. Tsuchiya. 1992. Inhibitory effect of noradrenaline on acute liver injury induced by carbon tetrachloride in the rat. Journal of Autonomic Nervous System.
41.
Zurück zum Zitat Lin, J.C., Y.J. Peng, S.Y. Wang, M.J. Lai, T.H. Young, D.M. Salter, et al. 2016. Sympathetic nervous system control of carbon tetrachloride-induced oxidative stress in liver through alpha-adrenergic signaling. Oxidative Medicine and Cellular Longevity 2016: 3190617.PubMed Lin, J.C., Y.J. Peng, S.Y. Wang, M.J. Lai, T.H. Young, D.M. Salter, et al. 2016. Sympathetic nervous system control of carbon tetrachloride-induced oxidative stress in liver through alpha-adrenergic signaling. Oxidative Medicine and Cellular Longevity 2016: 3190617.PubMed
42.
Zurück zum Zitat Lin, J.C., Y.J. Peng, S.Y. Wang, T.H. Young, D.M. Salter, and H.S. Lee. 2015. Role of the sympathetic nervous system in carbon tetrachloride-induced hepatotoxicity and systemic inflammation. PLoS ONE 10: 18. Lin, J.C., Y.J. Peng, S.Y. Wang, T.H. Young, D.M. Salter, and H.S. Lee. 2015. Role of the sympathetic nervous system in carbon tetrachloride-induced hepatotoxicity and systemic inflammation. PLoS ONE 10: 18.
43.
Zurück zum Zitat Lin, J.C., Y.J. Peng, S.Y. Wang, M.J. Lai, T.H. Young, D.M. Salter, et al. 2016. Sympathetic nervous system control of carbon tetrachloride-induced oxidative stress in liver through alpha-adrenergic signaling. Oxidative Medicine and Cellular Longevity 2016: 11. Lin, J.C., Y.J. Peng, S.Y. Wang, M.J. Lai, T.H. Young, D.M. Salter, et al. 2016. Sympathetic nervous system control of carbon tetrachloride-induced oxidative stress in liver through alpha-adrenergic signaling. Oxidative Medicine and Cellular Longevity 2016: 11.
44.
Zurück zum Zitat Lee, S.B., H.G. Kim, J.S. Lee, W.Y. Kim, M.M. Lee, Y.H. Kim, et al. 2019. Intermittent restraint-induced sympathetic activation attenuates hepatic steatosis and inflammation in a high-fat diet-fed mouse model. American Journal of Physiology. Gastrointestinal and Liver Physiology 317: G811–G823.PubMed Lee, S.B., H.G. Kim, J.S. Lee, W.Y. Kim, M.M. Lee, Y.H. Kim, et al. 2019. Intermittent restraint-induced sympathetic activation attenuates hepatic steatosis and inflammation in a high-fat diet-fed mouse model. American Journal of Physiology. Gastrointestinal and Liver Physiology 317: G811–G823.PubMed
45.
Zurück zum Zitat Nakade, Y., M. Yoneda, K. Nakamura, I. Makino, A. Terano. 2002. Involvement of endogenous CRF in carbon tetrachlorideinduced acute liver injury in rats. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 282:1782–8. Nakade, Y., M. Yoneda, K. Nakamura, I. Makino, A. Terano. 2002. Involvement of endogenous CRF in carbon tetrachlorideinduced acute liver injury in rats. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 282:1782–8.
46.
Zurück zum Zitat Zhang, J., L. Zhang, X. Sun, Y. Yang, L. Kong, C. Lu, et al. 2016. Acetylcholinesterase Inhibitors for Alzheimer’s disease treatment ameliorate acetaminophen-induced liver injury in mice via central cholinergic system regulation. Journal of Pharmacology and Experimental Therapeutics 359: 374–382.PubMed Zhang, J., L. Zhang, X. Sun, Y. Yang, L. Kong, C. Lu, et al. 2016. Acetylcholinesterase Inhibitors for Alzheimer’s disease treatment ameliorate acetaminophen-induced liver injury in mice via central cholinergic system regulation. Journal of Pharmacology and Experimental Therapeutics 359: 374–382.PubMed
47.
Zurück zum Zitat Akinci, S.B., N. Ulu, O.Z. Yondem, P. Firat, M.O. Guc, M. Kanbak, et al. 2005. Effect of neostigmine on organ injury in murine endotoxemia: Missing facts about the cholinergic antiinflammatory pathway. World Journal of Surgery 29: 1483–1489.PubMed Akinci, S.B., N. Ulu, O.Z. Yondem, P. Firat, M.O. Guc, M. Kanbak, et al. 2005. Effect of neostigmine on organ injury in murine endotoxemia: Missing facts about the cholinergic antiinflammatory pathway. World Journal of Surgery 29: 1483–1489.PubMed
48.
Zurück zum Zitat Steinebrunner, N., C. Mogler, S. Vittas, B. Hoyler, C. Sandig, W. Stremmel, et al. 2014. Pharmacologic cholinesterase inhibition improves survival in acetaminophen-induced acute liver failure in the mouse. BMC Gastroenterology 14: 148–156.PubMedPubMedCentral Steinebrunner, N., C. Mogler, S. Vittas, B. Hoyler, C. Sandig, W. Stremmel, et al. 2014. Pharmacologic cholinesterase inhibition improves survival in acetaminophen-induced acute liver failure in the mouse. BMC Gastroenterology 14: 148–156.PubMedPubMedCentral
49.
Zurück zum Zitat Abdel-Salam, O.M.E., E.R. Youness, R.S.E. Esmail, N.A. Mohammed, Y.A. Khadrawy, A.A. Sleem, et al. 2018. Protection by neostigmine and atropine against brain and liver injury induced by acute malathion exposure. Journal of Nanoscience and Nanotechnology 18: 510–521.PubMed Abdel-Salam, O.M.E., E.R. Youness, R.S.E. Esmail, N.A. Mohammed, Y.A. Khadrawy, A.A. Sleem, et al. 2018. Protection by neostigmine and atropine against brain and liver injury induced by acute malathion exposure. Journal of Nanoscience and Nanotechnology 18: 510–521.PubMed
50.
Zurück zum Zitat Waldburger, J.M., D.L. Boyle, M. Edgar, L.S. Sorkin, Y.A. Levine, V.A. Pavlov, et al. 2008. Spinal p38 MAP kinase regulates peripheral cholinergic outflow. Arthritis and Rheumatism 58: 2919–2921.PubMedPubMedCentral Waldburger, J.M., D.L. Boyle, M. Edgar, L.S. Sorkin, Y.A. Levine, V.A. Pavlov, et al. 2008. Spinal p38 MAP kinase regulates peripheral cholinergic outflow. Arthritis and Rheumatism 58: 2919–2921.PubMedPubMedCentral
51.
Zurück zum Zitat Maldifassi, M.C., C. Martin-Sanchez, G. Atienza, J.L. Cedillo, F. Arnalich, A. Bordas, et al. 2018. Interaction of the alpha7-nicotinic subunit with its human-specific duplicated dupalpha7 isoform in mammalian cells: Relevance in human inflammatory responses. Journal of Biological Chemistry 293: 27. Maldifassi, M.C., C. Martin-Sanchez, G. Atienza, J.L. Cedillo, F. Arnalich, A. Bordas, et al. 2018. Interaction of the alpha7-nicotinic subunit with its human-specific duplicated dupalpha7 isoform in mammalian cells: Relevance in human inflammatory responses. Journal of Biological Chemistry 293: 27.
52.
Zurück zum Zitat Hur, M.H., W. Song, D.H. Cheon, Y. Chang, Y.Y. Cho, Y.B. Lee, et al. 2023. Chemogenetic stimulation of the parasympathetic nervous system lowers hepatic lipid accumulation and inflammation in a nonalcoholic steatohepatitis mouse model. Life Sciences 321: 121533.PubMed Hur, M.H., W. Song, D.H. Cheon, Y. Chang, Y.Y. Cho, Y.B. Lee, et al. 2023. Chemogenetic stimulation of the parasympathetic nervous system lowers hepatic lipid accumulation and inflammation in a nonalcoholic steatohepatitis mouse model. Life Sciences 321: 121533.PubMed
53.
Zurück zum Zitat Ologunde, R., H. Zhao, K. Lu, and D. Ma. 2014. Organ cross talk and remote organ damage following acute kidney injury. International Urology and Nephrology 46: 2337–2345.PubMed Ologunde, R., H. Zhao, K. Lu, and D. Ma. 2014. Organ cross talk and remote organ damage following acute kidney injury. International Urology and Nephrology 46: 2337–2345.PubMed
54.
Zurück zum Zitat Lai, Y., J. Deng, M. Wang, M. Wang, L. Zhou, G. Meng, et al. 2019. Vagus nerve stimulation protects against acute liver injury induced by renal ischemia reperfusion via antioxidant stress and anti-inflammation. Biomedicine & Pharmacotherapy 117: 9. Lai, Y., J. Deng, M. Wang, M. Wang, L. Zhou, G. Meng, et al. 2019. Vagus nerve stimulation protects against acute liver injury induced by renal ischemia reperfusion via antioxidant stress and anti-inflammation. Biomedicine & Pharmacotherapy 117: 9.
55.
Zurück zum Zitat Sha, J., X. Feng, Y. Chen, H. Zhang, B. Li, X. Hu, et al. 2019. Dexmedetomidine improves acute stress-induced liver injury in rats by regulating MKP-1, inhibiting NF-kappaB pathway and cell apoptosis. Journal of Cellular Physiology 234: 1–11. Sha, J., X. Feng, Y. Chen, H. Zhang, B. Li, X. Hu, et al. 2019. Dexmedetomidine improves acute stress-induced liver injury in rats by regulating MKP-1, inhibiting NF-kappaB pathway and cell apoptosis. Journal of Cellular Physiology 234: 1–11.
56.
Zurück zum Zitat Mukhopadhyay, B., K. Holovac, K. Schuebel, P. Mukhopadhyay, R. Cinar, S. Iyer, et al. 2023. The endocannabinoid system promotes hepatocyte progenitor cell proliferation and maturation by modulating cellular energetics. Cell Death Discov. 9: 104.PubMedPubMedCentral Mukhopadhyay, B., K. Holovac, K. Schuebel, P. Mukhopadhyay, R. Cinar, S. Iyer, et al. 2023. The endocannabinoid system promotes hepatocyte progenitor cell proliferation and maturation by modulating cellular energetics. Cell Death Discov. 9: 104.PubMedPubMedCentral
57.
Zurück zum Zitat Oben, J.A., and A.M. Diehl. 2004. Sympathetic nervous system regulation of liver repair. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 280: 874–883.PubMed Oben, J.A., and A.M. Diehl. 2004. Sympathetic nervous system regulation of liver repair. The Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology 280: 874–883.PubMed
58.
Zurück zum Zitat Oben, J.A., T. Roskams, S. Yang, H. Lin, N. Sinelli, Z. Li, et al. 2003. Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury. Hepatology 38: 664–673.PubMed Oben, J.A., T. Roskams, S. Yang, H. Lin, N. Sinelli, Z. Li, et al. 2003. Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury. Hepatology 38: 664–673.PubMed
59.
Zurück zum Zitat Kiba, T. 2002. The role of the autonomic nervous system in liver regeneration and apoptosis–recent developments. Digestion 66: 79–88.PubMed Kiba, T. 2002. The role of the autonomic nervous system in liver regeneration and apoptosis–recent developments. Digestion 66: 79–88.PubMed
60.
Zurück zum Zitat Kamimura, K., R. Inoue, T. Nagoya, N. Sakai, R. Goto, M. Ko, Y. Niwa, and S. Terai. 2018. Autonomic nervous system network and liver regeneration. World Journal of Gastroenterology 24:1583–678. Kamimura, K., R. Inoue, T. Nagoya, N. Sakai, R. Goto, M. Ko, Y. Niwa, and S. Terai. 2018. Autonomic nervous system network and liver regeneration. World Journal of Gastroenterology 24:1583–678.
Metadaten
Titel
The Hepatic Nerves Regulated Inflammatory Effect in the Process of Liver Injury: Is Nerve the Key Treating Target for Liver Inflammation?
verfasst von
Kaili Yang
Zebing Huang
Shuyi Wang
Zhihong Zhao
Panpan Yi
Yayu Chen
Meifang Xiao
Jun Quan
Xingwang Hu
Publikationsdatum
25.07.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01854-x

Weitere Artikel der Ausgabe 5/2023

Inflammation 5/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.