Skip to main content
Erschienen in: Lasers in Medical Science 1/2023

01.12.2023 | Original Article

The pulse light mode enhances the effect of photobiomodulation on B16F10 melanoma cells through autophagy pathway

verfasst von: Zeqing Chen, Ruixiao Zhang, Haokuan Qin, Hui Jiang, Aixia Wang, Xiaolin Zhang, Shijie Huang, Miao Sun, Xuewei Fan, Zhicheng Lu, Yinghua Li, Shangfeng Liu, Muqing Liu

Erschienen in: Lasers in Medical Science | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

Photobiomodulation (PBM) is the use of low irradiance light of specific wavelengths to generate physiological changes and therapeutic effects. However, there are few studies on the effects of PBM of different LED light modes on cells. Here, we investigated the difference of influence between continuous wave (CW) and pulse-PBM on B16F10 melanoma cells. Our results suggested that the pulse mode had a more significant PBM than the CW mode on B16F10 melanoma cells. Our study confirmed that ROS and Ca2+ levels in B16F10 melanoma cells treated with pulse-PBM were significantly higher than those in the control and CW-PBM groups. One mechanism that causes the difference in CW and pulse-PBM action is that pulse-PBM activates autophagy of melanoma cells through the ROS/OPN3/Ca2+ signaling pathway, and excessive autophagy activation inhibits proliferation and apoptosis of melanoma cells. Autophagy may be one of the reasons for the difference between pulse- and CW-PBM on melanoma cells. More importantly, melanoma cells responded to brief PBM pulses by increasing intracellular Ca2+ levels.
Literatur
1.
Zurück zum Zitat Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–361PubMedPubMedCentral Hamblin MR (2017) Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys 4(3):337–361PubMedPubMedCentral
2.
Zurück zum Zitat Chen Z et al (2020) Irradiance plays a significant role in photobiomodulation of B16F10 melanoma cells by increasing reactive oxygen species and inhibiting mitochondrial function. Biomed Opt Express 11(1):27–39PubMed Chen Z et al (2020) Irradiance plays a significant role in photobiomodulation of B16F10 melanoma cells by increasing reactive oxygen species and inhibiting mitochondrial function. Biomed Opt Express 11(1):27–39PubMed
3.
Zurück zum Zitat Chen Z et al (2021) Comparative transcriptome analysis of gene expression patterns on B16F10 melanoma cells under photobiomodulation of different light modes. J Photochem Photobiol B 216:112127PubMed Chen Z et al (2021) Comparative transcriptome analysis of gene expression patterns on B16F10 melanoma cells under photobiomodulation of different light modes. J Photochem Photobiol B 216:112127PubMed
4.
Zurück zum Zitat Al-Watban FA, Zhang XY (2004) The comparison of effects between pulsed and CW lasers on wound healing. J Clin Laser Med Surg 22(1):15–18PubMed Al-Watban FA, Zhang XY (2004) The comparison of effects between pulsed and CW lasers on wound healing. J Clin Laser Med Surg 22(1):15–18PubMed
5.
Zurück zum Zitat Brondon P, Stadler I, Lanzafame RJ (2009) Pulsing influences photoradiation outcomes in cell culture. Lasers Surg Med 41(3):222–226PubMed Brondon P, Stadler I, Lanzafame RJ (2009) Pulsing influences photoradiation outcomes in cell culture. Lasers Surg Med 41(3):222–226PubMed
6.
Zurück zum Zitat Ueda Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21(5):271–277PubMed Ueda Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21(5):271–277PubMed
7.
Zurück zum Zitat Kim HB et al (2017) Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci Rep 7(1):15927PubMedPubMedCentral Kim HB et al (2017) Pulse frequency dependency of photobiomodulation on the bioenergetic functions of human dental pulp stem cells. Sci Rep 7(1):15927PubMedPubMedCentral
8.
Zurück zum Zitat He W et al (2012) Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy 8(12):1811–1821PubMedPubMedCentral He W et al (2012) Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy 8(12):1811–1821PubMedPubMedCentral
9.
Zurück zum Zitat Wang S et al (2021) Intracellular alpha-fetoprotein interferes with all-trans retinoic acid induced ATG7 expression and autophagy in hepatocellular carcinoma cells. Sci Rep 11(1):2146PubMedPubMedCentral Wang S et al (2021) Intracellular alpha-fetoprotein interferes with all-trans retinoic acid induced ATG7 expression and autophagy in hepatocellular carcinoma cells. Sci Rep 11(1):2146PubMedPubMedCentral
10.
Zurück zum Zitat Towers CG, Thorburn A (2016) Therapeutic targeting of autophagy. EBioMedicine 14:15–23PubMed Towers CG, Thorburn A (2016) Therapeutic targeting of autophagy. EBioMedicine 14:15–23PubMed
11.
12.
Zurück zum Zitat Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132PubMed Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132PubMed
13.
Zurück zum Zitat Radoshevich L et al (2010) ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142(4):590–600PubMedPubMedCentral Radoshevich L et al (2010) ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142(4):590–600PubMedPubMedCentral
14.
Zurück zum Zitat Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9(12):1004–1010PubMedPubMedCentral Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9(12):1004–1010PubMedPubMedCentral
15.
Zurück zum Zitat Klionsky DJ et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222PubMedPubMedCentral Klionsky DJ et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222PubMedPubMedCentral
16.
17.
Zurück zum Zitat Høyer-Hansen M, Jäättelä M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14(9):1576–1582PubMed Høyer-Hansen M, Jäättelä M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14(9):1576–1582PubMed
18.
Zurück zum Zitat Regazzetti C et al (2018) Melanocytes sense blue light and regulate pigmentation through opsin-3. J Invest Dermatol 138(1):171–178PubMed Regazzetti C et al (2018) Melanocytes sense blue light and regulate pigmentation through opsin-3. J Invest Dermatol 138(1):171–178PubMed
19.
Zurück zum Zitat Chen Z, Huang S, Liu M (2021) The review of the light parameters and mechanisms of photobiomodulation on melanoma cells. Photodermatol Photoimmunol Photomed 38:3–11PubMed Chen Z, Huang S, Liu M (2021) The review of the light parameters and mechanisms of photobiomodulation on melanoma cells. Photodermatol Photoimmunol Photomed 38:3–11PubMed
20.
Zurück zum Zitat Lan Y, Wang Y, Lu H (2020) Opsin 3 is a key regulator of ultraviolet A-induced photoageing in human dermal fibroblast cells. Br J Dermatol 182(5):1228–1244PubMed Lan Y, Wang Y, Lu H (2020) Opsin 3 is a key regulator of ultraviolet A-induced photoageing in human dermal fibroblast cells. Br J Dermatol 182(5):1228–1244PubMed
22.
Zurück zum Zitat Pfisterer SG et al (2011) Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol Pharmacol 80(6):1066–1075PubMed Pfisterer SG et al (2011) Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol Pharmacol 80(6):1066–1075PubMed
23.
Zurück zum Zitat Grotemeier A et al (2010) AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal 22(6):914–925PubMed Grotemeier A et al (2010) AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal 22(6):914–925PubMed
24.
Zurück zum Zitat Hatano A et al (2013) Mitochondrial colocalization with Ca2+ release sites is crucial to cardiac metabolism. Biophys J 104(2):496–504PubMedPubMedCentral Hatano A et al (2013) Mitochondrial colocalization with Ca2+ release sites is crucial to cardiac metabolism. Biophys J 104(2):496–504PubMedPubMedCentral
25.
Zurück zum Zitat Konràd C et al (2011) A distinct sequence in the adenine nucleotide translocase from Artemia franciscana embryos is associated with insensitivity to bongkrekate and atypical effects of adenine nucleotides on Ca2+ uptake and sequestration. Febs j 278(5):822–836PubMed Konràd C et al (2011) A distinct sequence in the adenine nucleotide translocase from Artemia franciscana embryos is associated with insensitivity to bongkrekate and atypical effects of adenine nucleotides on Ca2+ uptake and sequestration. Febs j 278(5):822–836PubMed
26.
Zurück zum Zitat Menzies KJ, Robinson BH, Hood DA (2009) Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. Am J Physiol Cell Physiol 296(2):C355–C362PubMed Menzies KJ, Robinson BH, Hood DA (2009) Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. Am J Physiol Cell Physiol 296(2):C355–C362PubMed
27.
Zurück zum Zitat Nishida M et al (2013) Voltage-dependent N-type Ca2+ channels in endothelial cells contribute to oxidative stress-related endothelial dysfunction induced by angiotensin II in mice. Biochem Biophys Res Commun 434(2):210–216PubMed Nishida M et al (2013) Voltage-dependent N-type Ca2+ channels in endothelial cells contribute to oxidative stress-related endothelial dysfunction induced by angiotensin II in mice. Biochem Biophys Res Commun 434(2):210–216PubMed
28.
Zurück zum Zitat Kleszczynski K et al (2019) Melatonin exerts oncostatic capacity and decreases melanogenesis in human MNT-1 melanoma cells. J Pineal Res 67(4):e12610PubMedPubMedCentral Kleszczynski K et al (2019) Melatonin exerts oncostatic capacity and decreases melanogenesis in human MNT-1 melanoma cells. J Pineal Res 67(4):e12610PubMedPubMedCentral
29.
Zurück zum Zitat Zhu Y, He H (2017) Molecular response of mitochondria to a short-duration femtosecond-laser stimulation. Biomed Opt Express 8(11):4965–4973PubMedPubMedCentral Zhu Y, He H (2017) Molecular response of mitochondria to a short-duration femtosecond-laser stimulation. Biomed Opt Express 8(11):4965–4973PubMedPubMedCentral
30.
Zurück zum Zitat Cao LL et al (2016) Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature 539(7630):575–578PubMedPubMedCentral Cao LL et al (2016) Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature 539(7630):575–578PubMedPubMedCentral
31.
Zurück zum Zitat Pal G et al (2007) Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes. J Photochem Photobiol B 86(3):252–261PubMed Pal G et al (2007) Effect of low intensity laser interaction with human skin fibroblast cells using fiber-optic nano-probes. J Photochem Photobiol B 86(3):252–261PubMed
32.
Zurück zum Zitat Qian W et al (2019) Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction. Proc Natl Acad Sci U S A 116(37):18435–18444PubMedPubMedCentral Qian W et al (2019) Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction. Proc Natl Acad Sci U S A 116(37):18435–18444PubMedPubMedCentral
33.
Zurück zum Zitat Brunori M, Giuffrè A, Sarti P (2005) Cytochrome c oxidase, ligands and electrons. J Inorg Biochem 99(1):324–336PubMed Brunori M, Giuffrè A, Sarti P (2005) Cytochrome c oxidase, ligands and electrons. J Inorg Biochem 99(1):324–336PubMed
34.
Zurück zum Zitat Jishi T, Matsuda R, Fujiwara K (2018) Effects of photosynthetic photon flux density, frequency, duty ratio, and their interactions on net photosynthetic rate of cos lettuce leaves under pulsed light: explanation based on photosynthetic-intermediate pool dynamics. Photosynth Res 136(3):371–378PubMed Jishi T, Matsuda R, Fujiwara K (2018) Effects of photosynthetic photon flux density, frequency, duty ratio, and their interactions on net photosynthetic rate of cos lettuce leaves under pulsed light: explanation based on photosynthetic-intermediate pool dynamics. Photosynth Res 136(3):371–378PubMed
35.
Zurück zum Zitat Chang SY et al (2019) Enhanced mitochondrial membrane potential and ATP synthesis by photobiomodulation increases viability of the auditory cell line after gentamicin-induced intrinsic apoptosis. Sci Rep 9(1):19248PubMedPubMedCentral Chang SY et al (2019) Enhanced mitochondrial membrane potential and ATP synthesis by photobiomodulation increases viability of the auditory cell line after gentamicin-induced intrinsic apoptosis. Sci Rep 9(1):19248PubMedPubMedCentral
36.
Zurück zum Zitat Amaroli A et al (2019) Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation. Lasers Med Sci 34(3):495–504PubMed Amaroli A et al (2019) Photobiomodulation with 808-nm diode laser light promotes wound healing of human endothelial cells through increased reactive oxygen species production stimulating mitochondrial oxidative phosphorylation. Lasers Med Sci 34(3):495–504PubMed
37.
Zurück zum Zitat Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94(2):199–212PubMedPubMedCentral Hamblin MR (2018) Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol 94(2):199–212PubMedPubMedCentral
38.
Zurück zum Zitat Alevriadou BR et al (2021) Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol 320(4):C465–c482PubMed Alevriadou BR et al (2021) Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol 320(4):C465–c482PubMed
39.
41.
Zurück zum Zitat Hill BG et al (2012) Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem 393(12):1485–1512PubMedPubMedCentral Hill BG et al (2012) Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem 393(12):1485–1512PubMedPubMedCentral
42.
Zurück zum Zitat Tang HW et al (2021) mTORC1-chaperonin CCT signaling regulates m(6)A RNA methylation to suppress autophagy. Proc Natl Acad Sci USA 118(10):e2021945118 Tang HW et al (2021) mTORC1-chaperonin CCT signaling regulates m(6)A RNA methylation to suppress autophagy. Proc Natl Acad Sci USA 118(10):e2021945118
43.
Zurück zum Zitat Chong ZX, Yeap SK, Ho WY (2021) Regulation of autophagy by microRNAs in human breast cancer. J Biomed Sci 28(1):21PubMedPubMedCentral Chong ZX, Yeap SK, Ho WY (2021) Regulation of autophagy by microRNAs in human breast cancer. J Biomed Sci 28(1):21PubMedPubMedCentral
44.
Zurück zum Zitat Chou HY et al (2021) Bifunctional mechanisms of autophagy and apoptosis regulations in melanoma from Bacillus subtilis natto fermentation extract. Food Chem Toxicol 150:112020PubMed Chou HY et al (2021) Bifunctional mechanisms of autophagy and apoptosis regulations in melanoma from Bacillus subtilis natto fermentation extract. Food Chem Toxicol 150:112020PubMed
Metadaten
Titel
The pulse light mode enhances the effect of photobiomodulation on B16F10 melanoma cells through autophagy pathway
verfasst von
Zeqing Chen
Ruixiao Zhang
Haokuan Qin
Hui Jiang
Aixia Wang
Xiaolin Zhang
Shijie Huang
Miao Sun
Xuewei Fan
Zhicheng Lu
Yinghua Li
Shangfeng Liu
Muqing Liu
Publikationsdatum
01.12.2023
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2023
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-023-03733-1

Weitere Artikel der Ausgabe 1/2023

Lasers in Medical Science 1/2023 Zur Ausgabe