Skip to main content
Erschienen in: Inflammation 6/2022

22.07.2022 | Original Article

Angiotensin II Triggers NLRP3 Inflammasome Activation by a Ca2+ Signaling-Dependent Pathway in Rat Cardiac Fibroblast Ang-II by a Ca2+-Dependent Mechanism Triggers NLRP3 Inflammasome in CF

verfasst von: Jenaro Antonio Espitia-Corredor, Pía Boza, Claudio Espinoza-Pérez, José Miguel Lillo, Constanza Rimassa-Taré, Víctor Machuca, José Miguel Osorio-Sandoval, Raúl Vivar, Samir Bolivar, Viviana Pardo-Jiménez, Carlos Félix Sánchez-Ferrer, Concepción Peiró, Guillermo Díaz-Araya

Erschienen in: Inflammation | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Angiotensin II (Ang-II) is a widely studied hypertensive, profibrotic, and pro-inflammatory peptide. In the heart, cardiac fibroblasts (CF) express type 1 angiotensin II receptors (AT1R), Toll-like receptor-4 (TLR4), and the NLRP3 inflammasome complex, which play important roles in pro-inflammatory processes. When activated, the NLRP3 inflammasome triggers proteolytic cleavage of pro-IL-1, resulting in its activation. However, in CF the mechanism by which Ang-II assembles and activates the NLRP3 inflammasome remains not fully known. To elucidate this important point, we stimulated TLR4 receptors in CF and evaluated the signaling pathways by which Ang-II triggers the assembly and activity. In cultured rat CF, pro-IL-1β levels, NLRP3, ASC, and caspase-1 expression levels were determined by Western blot. NLRP3 inflammasome complex assembly was analyzed by immunocytochemistry, whereas by ELISA, we analyzed NLRP3 inflammasome activity and \(IL-1\beta\) release. In CF, Ang-II triggered NLRP3 inflammasome assembly and caspase-1 activity; and in LPS-pretreated CF, Ang-II also triggered \(IL-1\beta\) secretion. These effects were blocked by losartan (AT1R antagonist), U73221 (PLC inhibitor), 2-APB (IP3R antagonist), and BAPTA-AM (Ca2+ chelator) indicating that the AT1R/PLC/IP3R/Ca2+ pathway is involved. Finally, bafilomycin A1 prevented Ang-II-induced \(IL-1\beta\) secretion, indicating that a non-classical protein secretion mechanism is involved. These findings suggest that in CF, Ang-II by a Ca2+-dependent mechanism triggers NLRP3 inflammasome assembly and activation leading to \(IL-1\beta\) secretion through a non-conventional protein secretion mechanism.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
4.
Zurück zum Zitat Cheng, Z.J., H. Vapaatalo, and E. Mervaala. 2005. Angiotensin II and vascular inflammation. Med Sci Monit 11: Ra194–205. Cheng, Z.J., H. Vapaatalo, and E. Mervaala. 2005. Angiotensin II and vascular inflammation. Med Sci Monit 11: Ra194–205.
5.
Zurück zum Zitat Gan, W., J. Ren, T. Li, S. Lv, C. Li, Z. Liu, and M. Yang. 2018. The SGK1 inhibitor EMD638683, prevents angiotensin II–induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1864: 1–10. https://doi.org/10.1016/j.bbadis.2017.10.001. Gan, W., J. Ren, T. Li, S. Lv, C. Li, Z. Liu, and M. Yang. 2018. The SGK1 inhibitor EMD638683, prevents angiotensin II–induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1864: 1–10. https://​doi.​org/​10.​1016/​j.​bbadis.​2017.​10.​001.
6.
Zurück zum Zitat Kawaguchi, M., M. Takahashi, T. Hata, Y. Kashima, F. Usui, H. Morimoto, A. Izawa, Y. Takahashi, J. Masumoto, J. Koyama, M. Hongo, T. Noda, J. Nakayama, J. Sagara, and Taniguchi, S.i. and Ikeda, U. 2011. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123: 594–604. https://doi.org/10.1161/CIRCULATIONAHA.110.982777.CrossRefPubMed Kawaguchi, M., M. Takahashi, T. Hata, Y. Kashima, F. Usui, H. Morimoto, A. Izawa, Y. Takahashi, J. Masumoto, J. Koyama, M. Hongo, T. Noda, J. Nakayama, J. Sagara, and Taniguchi, S.i. and Ikeda, U. 2011. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123: 594–604. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​110.​982777.CrossRefPubMed
7.
Zurück zum Zitat Sandanger, Ø., T. Ranheim, L.E. Vinge, M. Bliksøen, K. Alfsnes, A.V. Finsen, C.P. Dahl, E.T. Askevold, G. Florholmen, G. Christensen, K.A. Fitzgerald, E. Lien, G. Valen, T. Espevik, P. Aukrust, and A. Yndestad. 2013. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia–reperfusion injury. Cardiovascular Research 99: 164–174. https://doi.org/10.1093/cvr/cvt091.CrossRefPubMed Sandanger, Ø., T. Ranheim, L.E. Vinge, M. Bliksøen, K. Alfsnes, A.V. Finsen, C.P. Dahl, E.T. Askevold, G. Florholmen, G. Christensen, K.A. Fitzgerald, E. Lien, G. Valen, T. Espevik, P. Aukrust, and A. Yndestad. 2013. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia–reperfusion injury. Cardiovascular Research 99: 164–174. https://​doi.​org/​10.​1093/​cvr/​cvt091.CrossRefPubMed
11.
Zurück zum Zitat Xiao, H., H. Li, J.-J. Wang, J.-S. Zhang, J. Shen, X.-B. An, C.-C. Zhang, J.-M. Wu, Y. Song, X.-Y. Wang, H.-Y. Yu, X.-N. Deng, Z.-J. Li, M. Xu, Z.-Z. Lu, J. Du, W. Gao, A.-H. Zhang, Y. Feng, and Y.-Y. Zhang. 2018. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. European Heart Journal 39: 60–69. https://doi.org/10.1093/eurheartj/ehx261.CrossRefPubMed Xiao, H., H. Li, J.-J. Wang, J.-S. Zhang, J. Shen, X.-B. An, C.-C. Zhang, J.-M. Wu, Y. Song, X.-Y. Wang, H.-Y. Yu, X.-N. Deng, Z.-J. Li, M. Xu, Z.-Z. Lu, J. Du, W. Gao, A.-H. Zhang, Y. Feng, and Y.-Y. Zhang. 2018. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. European Heart Journal 39: 60–69. https://​doi.​org/​10.​1093/​eurheartj/​ehx261.CrossRefPubMed
15.
Zurück zum Zitat Aránguiz-Urroz, P., D. Soto, A. Contreras, R. Troncoso, M. Chiong, J. Montenegro, D. Venegas, C. Smolic, P. Ayala, W.G. Thomas, S. Lavandero, and G. Díaz-Araya. 2009. Differential participation of angiotensin II type 1 and 2 receptors in the regulation of cardiac cell death triggered by angiotensin II. American Journal of Hypertension 22: 569–576. https://doi.org/10.1038/ajh.2009.32.CrossRefPubMed Aránguiz-Urroz, P., D. Soto, A. Contreras, R. Troncoso, M. Chiong, J. Montenegro, D. Venegas, C. Smolic, P. Ayala, W.G. Thomas, S. Lavandero, and G. Díaz-Araya. 2009. Differential participation of angiotensin II type 1 and 2 receptors in the regulation of cardiac cell death triggered by angiotensin II. American Journal of Hypertension 22: 569–576. https://​doi.​org/​10.​1038/​ajh.​2009.​32.CrossRefPubMed
16.
Zurück zum Zitat Vivar, R., C. Soto, M. Copaja, F. Mateluna, P. Aranguiz, J.P. Muñoz, M. Chiong, L. Garcia, A. Letelier, W.G. Thomas, S. Lavandero, and G. Díaz-Araya. 2008. Phospholipase C/protein kinase C pathway mediates angiotensin II-dependent apoptosis in neonatal rat cardiac fibroblasts expressing AT1 receptor. Journal of Cardiovascular Pharmacology. https://doi.org/10.1097/FJC.0b013e318181fadd.CrossRefPubMed Vivar, R., C. Soto, M. Copaja, F. Mateluna, P. Aranguiz, J.P. Muñoz, M. Chiong, L. Garcia, A. Letelier, W.G. Thomas, S. Lavandero, and G. Díaz-Araya. 2008. Phospholipase C/protein kinase C pathway mediates angiotensin II-dependent apoptosis in neonatal rat cardiac fibroblasts expressing AT1 receptor. Journal of Cardiovascular Pharmacology. https://​doi.​org/​10.​1097/​FJC.​0b013e318181fadd​.CrossRefPubMed
17.
19.
Zurück zum Zitat Bolívar, S., R. Santana, P. Ayala, R. Landaeta, P. Boza, C. Humeres, R. Vivar, C. Muñoz, V. Pardo, S. Fernandez, R. Anfossi, and G. Diaz-Araya. 2017. Lipopolysaccharide activates Toll-like receptor 4 and prevents cardiac fibroblast-to-myofibroblast differentiation. Cardiovascular Toxicology 17: 458–470. https://doi.org/10.1007/s12012-017-9404-4.CrossRefPubMed Bolívar, S., R. Santana, P. Ayala, R. Landaeta, P. Boza, C. Humeres, R. Vivar, C. Muñoz, V. Pardo, S. Fernandez, R. Anfossi, and G. Diaz-Araya. 2017. Lipopolysaccharide activates Toll-like receptor 4 and prevents cardiac fibroblast-to-myofibroblast differentiation. Cardiovascular Toxicology 17: 458–470. https://​doi.​org/​10.​1007/​s12012-017-9404-4.CrossRefPubMed
20.
Zurück zum Zitat Olivares-Silva, F., R. Landaeta, P. Aranguiz, S. Bolivar, C. Humeres, R. Anfossi, R. Vivar, P. Boza, C. Munoz, V. Pardo-Jimenez, C. Peiro, C.F. Sanchez-Ferrer, and G. Diaz-Araya. 2018. Heparan sulfate potentiates leukocyte adhesion on cardiac fibroblast by enhancing Vcam-1 and Icam-1 expression. Biochimica et Biophysica Acta, Molecular Basis of Disease 1864: 831–842. https://doi.org/10.1016/j.bbadis.2017.12.002.CrossRefPubMed Olivares-Silva, F., R. Landaeta, P. Aranguiz, S. Bolivar, C. Humeres, R. Anfossi, R. Vivar, P. Boza, C. Munoz, V. Pardo-Jimenez, C. Peiro, C.F. Sanchez-Ferrer, and G. Diaz-Araya. 2018. Heparan sulfate potentiates leukocyte adhesion on cardiac fibroblast by enhancing Vcam-1 and Icam-1 expression. Biochimica et Biophysica Acta, Molecular Basis of Disease 1864: 831–842. https://​doi.​org/​10.​1016/​j.​bbadis.​2017.​12.​002.CrossRefPubMed
21.
Zurück zum Zitat Humeres, C., R. Vivar, P. Boza, C. Munoz, S. Bolivar, R. Anfossi, J.M. Osorio, F. Olivares-Silva, L. Garcia, and G. Diaz-Araya. 2016. Cardiac fibroblast cytokine profiles induced by proinflammatory or profibrotic stimuli promote monocyte recruitment and modulate macrophage M1/M2 balance in vitro. Journal of Molecular and Cellular Cardiology. https://doi.org/10.1016/j.yjmcc.2016.10.014.CrossRefPubMed Humeres, C., R. Vivar, P. Boza, C. Munoz, S. Bolivar, R. Anfossi, J.M. Osorio, F. Olivares-Silva, L. Garcia, and G. Diaz-Araya. 2016. Cardiac fibroblast cytokine profiles induced by proinflammatory or profibrotic stimuli promote monocyte recruitment and modulate macrophage M1/M2 balance in vitro. Journal of Molecular and Cellular Cardiology. https://​doi.​org/​10.​1016/​j.​yjmcc.​2016.​10.​014.CrossRefPubMed
22.
31.
Zurück zum Zitat Rossol, M., M. Pierer, N. Raulien, D. Quandt, U. Meusch, K. Rothe, K. Schubert, T. Schöneberg, M. Schaefer, U. Krügel, S. Smajilovic, H. Bräuner-Osborne, C. Baerwald, and U. Wagner. 2012. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nature communications 3: 1329–1329. https://doi.org/10.1038/ncomms2339.CrossRefPubMed Rossol, M., M. Pierer, N. Raulien, D. Quandt, U. Meusch, K. Rothe, K. Schubert, T. Schöneberg, M. Schaefer, U. Krügel, S. Smajilovic, H. Bräuner-Osborne, C. Baerwald, and U. Wagner. 2012. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nature communications 3: 1329–1329. https://​doi.​org/​10.​1038/​ncomms2339.CrossRefPubMed
33.
Zurück zum Zitat Usui, F., K. Shirasuna, H. Kimura, K. Tatsumi, A. Kawashima, T. Karasawa, K. Yoshimura, H. Aoki, H. Tsutsui, T. Noda, J. Sagara, and Taniguchi, S.i. and Takahashi, M. 2015. Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II–induced aortic aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology 35: 127–136. https://doi.org/10.1161/ATVBAHA.114.303763.CrossRefPubMed Usui, F., K. Shirasuna, H. Kimura, K. Tatsumi, A. Kawashima, T. Karasawa, K. Yoshimura, H. Aoki, H. Tsutsui, T. Noda, J. Sagara, and Taniguchi, S.i. and Takahashi, M. 2015. Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II–induced aortic aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology 35: 127–136. https://​doi.​org/​10.​1161/​ATVBAHA.​114.​303763.CrossRefPubMed
Metadaten
Titel
Angiotensin II Triggers NLRP3 Inflammasome Activation by a Ca2+ Signaling-Dependent Pathway in Rat Cardiac Fibroblast Ang-II by a Ca2+-Dependent Mechanism Triggers NLRP3 Inflammasome in CF
verfasst von
Jenaro Antonio Espitia-Corredor
Pía Boza
Claudio Espinoza-Pérez
José Miguel Lillo
Constanza Rimassa-Taré
Víctor Machuca
José Miguel Osorio-Sandoval
Raúl Vivar
Samir Bolivar
Viviana Pardo-Jiménez
Carlos Félix Sánchez-Ferrer
Concepción Peiró
Guillermo Díaz-Araya
Publikationsdatum
22.07.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2022
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01707-z

Weitere Artikel der Ausgabe 6/2022

Inflammation 6/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.