Skip to main content
Erschienen in: Lasers in Medical Science 1/2024

01.12.2024 | Original Article

Enhancing tumor’s skin photothermal therapy using Gold nanoparticles : a Monte Carlo simulation

verfasst von: F. Zerakni, A. S. A Dib, A. Attili

Erschienen in: Lasers in Medical Science | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study is to investigate how the introduction of Gold nanoparticles GNPs into a skin tumor affects the ability to absorb laser light during multicolor laser exposure. The Monte Carlo Geant4 technique was used to construct a cubic geometry simulating human skin, and a 5 mm tumor spheroid was implanted at an adjustable depth x. Our findings show that injecting a very low concentration of 0.01% GNPs into a tumor located 1 cm below the skin’s surface causes significant laser absorption of up to 25%, particularly in the 900 nm to 1200 nm range, resulting in a temperature increase of approximately 20%. It is an effective way to raise a tumor’s temperature and cause cell death while preserving healthy cells. The addition of GNPs to a tumor during polychromatic laser exposure with a wavelength ranging from 900 nm to 1200 nm increases laser absorption and thus temperature while preserving areas without GNPs.
Literatur
1.
Zurück zum Zitat Pashazadeh A, Boese A, Friebe M (2019) Radiation therapy techniques in the treatment of skin cancer: an overview of the current status and outlook. J Dermatological Treat, page 1–41 Pashazadeh A, Boese A, Friebe M (2019) Radiation therapy techniques in the treatment of skin cancer: an overview of the current status and outlook. J Dermatological Treat, page 1–41
2.
Zurück zum Zitat Jeynes JCG, Wordingham F, Moran LJ et al (2019) Monte Carlo simulations of heat deposition during photothermal skin cancer therapy using NP’s. Biomolecules 9(3):343CrossRefPubMedPubMedCentral Jeynes JCG, Wordingham F, Moran LJ et al (2019) Monte Carlo simulations of heat deposition during photothermal skin cancer therapy using NP’s. Biomolecules 9(3):343CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Bohara RA (2019) Introduction and types of Hybrid nanostructures for Medical Applications. Hybrid Nanostructures for Cancer Theranostics Bohara RA (2019) Introduction and types of Hybrid nanostructures for Medical Applications. Hybrid Nanostructures for Cancer Theranostics
4.
Zurück zum Zitat Ash C, Dubec M, Donne K, Bashford T (2017) Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci 32(8):1909–1918CrossRefPubMedPubMedCentral Ash C, Dubec M, Donne K, Bashford T (2017) Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci 32(8):1909–1918CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Martı́nez Maestro D, del Rosal L (2014) Jaque. NP’s for photothermal therapies. Nanoscale 6(16):9494–9530CrossRefPubMed Martı́nez Maestro D, del Rosal L (2014) Jaque. NP’s for photothermal therapies. Nanoscale 6(16):9494–9530CrossRefPubMed
6.
Zurück zum Zitat Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRefPubMed Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRefPubMed
7.
Zurück zum Zitat Ivan H, El-Sayed X, Huang, Mostafa A, El-Sayed (2005) Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated GNP’s. Nano Lett 5(5):829–834CrossRef Ivan H, El-Sayed X, Huang, Mostafa A, El-Sayed (2005) Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated GNP’s. Nano Lett 5(5):829–834CrossRef
8.
Zurück zum Zitat Xiaohua Huang Ivan H, El-Sayed W, Qian, Mostafa A, El-Sayed (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRef Xiaohua Huang Ivan H, El-Sayed W, Qian, Mostafa A, El-Sayed (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRef
9.
Zurück zum Zitat Marcella MAURO, Matteo CROSERA, Carlotta BIANCO et al (2015) Permeation of platinum and rhodium NP’s through intact and damaged human skin. J Nanopart Res 17:1–11 Marcella MAURO, Matteo CROSERA, Carlotta BIANCO et al (2015) Permeation of platinum and rhodium NP’s through intact and damaged human skin. J Nanopart Res 17:1–11
10.
Zurück zum Zitat Valentine RM, Ibbotson SH, Wood K, Brown CT, Moseley H (2013) Modelling fluorescence in clinical photodynamic therapy. Photochem Photobiol Sci 12(1):203–213CrossRefPubMed Valentine RM, Ibbotson SH, Wood K, Brown CT, Moseley H (2013) Modelling fluorescence in clinical photodynamic therapy. Photochem Photobiol Sci 12(1):203–213CrossRefPubMed
11.
Zurück zum Zitat Campbell CL, Brown CT, Wood K, Moseley H Modelling topical photodynamic therapy treatment including the continuous production of protoporphyrin ix. Phys Med Biol., 61(21):7507–7521.,2016. Campbell CL, Brown CT, Wood K, Moseley H Modelling topical photodynamic therapy treatment including the continuous production of protoporphyrin ix. Phys Med Biol., 61(21):7507–7521.,2016.
12.
Zurück zum Zitat Campbell CL, Wood K, Brown CT, Moseley H (2016) Monte Carlo modelling of photodynamic therapy treatments comparing clustered three dimensional tumour structures with homogeneous tissue structures. Phys Med Biol 61(13):4840–4854CrossRefPubMed Campbell CL, Wood K, Brown CT, Moseley H (2016) Monte Carlo modelling of photodynamic therapy treatments comparing clustered three dimensional tumour structures with homogeneous tissue structures. Phys Med Biol 61(13):4840–4854CrossRefPubMed
15.
20.
Zurück zum Zitat Xiaoren Tang Feng Cao Weiyuan Ma at al (2020) Cancer cells resist hyperthermia due to its obstructed activation of caspase 3. Rep Practical Oncol Radiotherapy 25:323–326CrossRef Xiaoren Tang Feng Cao Weiyuan Ma at al (2020) Cancer cells resist hyperthermia due to its obstructed activation of caspase 3. Rep Practical Oncol Radiotherapy 25:323–326CrossRef
21.
22.
Zurück zum Zitat Gaipl US, Datta NR, Ordonez SG et al (2016) Local hyperthermia in combined modality treatment of cancer. Crit Rev Oncol Hematol 97:200–210 Gaipl US, Datta NR, Ordonez SG et al (2016) Local hyperthermia in combined modality treatment of cancer. Crit Rev Oncol Hematol 97:200–210
23.
Zurück zum Zitat Mayer A, Vaupel P (2012) Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfus Med Hemother 39:302–308 Mayer A, Vaupel P (2012) Hypoxia and anemia: effects on tumor biology and treatment resistance. Transfus Med Hemother 39:302–308
24.
Zurück zum Zitat Agostinelli S, Allison J, Amako K et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A 506(3):250–303CrossRef Agostinelli S, Allison J, Amako K et al (2003) Geant4—a simulation toolkit. Nucl Instrum Methods Phys Res Sect A 506(3):250–303CrossRef
25.
Zurück zum Zitat Allison J, Amako K, Apostolakis J et al (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53(1):270–278CrossRef Allison J, Amako K, Apostolakis J et al (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53(1):270–278CrossRef
26.
30.
Zurück zum Zitat Wilhelm S et al (2016) Analysis of nanoparticle delivery to tumours. Nat Reviews Mater 1:16014CrossRef Wilhelm S et al (2016) Analysis of nanoparticle delivery to tumours. Nat Reviews Mater 1:16014CrossRef
31.
Zurück zum Zitat Chauhan VP et al (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7:383–388CrossRefPubMedPubMedCentral Chauhan VP et al (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7:383–388CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Tuersun A, Yusufu P, Yimiti T, Sidike A (2017) Refractive index sensitivity analysis of GNP’s. Optik 149:384–390CrossRef Tuersun A, Yusufu P, Yimiti T, Sidike A (2017) Refractive index sensitivity analysis of GNP’s. Optik 149:384–390CrossRef
35.
Zurück zum Zitat Aleksandar Z, Tasic Bojan D, Djordjevic Dusan K, Grozdanic, Radojkovic N (1992) Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures. J Chem Eng Data 37(3):310–313CrossRef Aleksandar Z, Tasic Bojan D, Djordjevic Dusan K, Grozdanic, Radojkovic N (1992) Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures. J Chem Eng Data 37(3):310–313CrossRef
36.
Zurück zum Zitat YAKUBOVSKY Dmitry I, STEBUNOV Yury VKIRTAEV, Roman V et al Ultrathin and ultrasmooth gold films on monolayer mos2. Advanced Materials Interfaces, Volume 2023(Article ID 3413380):1900196 YAKUBOVSKY Dmitry I, STEBUNOV Yury VKIRTAEV, Roman V et al Ultrathin and ultrasmooth gold films on monolayer mos2. Advanced Materials Interfaces, Volume 2023(Article ID 3413380):1900196
37.
Zurück zum Zitat Hale GM, Querry MR (1973) Optical constants of water in the 200 nm to 200 µm wavelength region. Appl Opt 12:555–563CrossRefPubMed Hale GM, Querry MR (1973) Optical constants of water in the 200 nm to 200 µm wavelength region. Appl Opt 12:555–563CrossRefPubMed
38.
Zurück zum Zitat Shrivastav RP, Sardar DK (2004) Interaction of laser radiation with biological materials: a review. Prog Quantum Electron 28(1):1–43 Shrivastav RP, Sardar DK (2004) Interaction of laser radiation with biological materials: a review. Prog Quantum Electron 28(1):1–43
39.
Zurück zum Zitat Venugopalan V, Vogel A (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644CrossRefPubMed Venugopalan V, Vogel A (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644CrossRefPubMed
40.
Zurück zum Zitat Fan H, Chen S, Du Z, Yan T, Alimu G, Zhu L, Ma R, Alifu N, Zhang X (2022) New indocyanine green therapeutic fluorescence nanoprobes assisted high-efficient photothermal therapy for cervical cancer. Dye Pigment 200:110174CrossRef Fan H, Chen S, Du Z, Yan T, Alimu G, Zhu L, Ma R, Alifu N, Zhang X (2022) New indocyanine green therapeutic fluorescence nanoprobes assisted high-efficient photothermal therapy for cervical cancer. Dye Pigment 200:110174CrossRef
41.
Zurück zum Zitat Ren Y, Qi H, Chen Q, Ruan L (2017) Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy. Int J Heat Mass Transf 106:212–221CrossRef Ren Y, Qi H, Chen Q, Ruan L (2017) Thermal dosage investigation for optimal temperature distribution in gold nanoparticle enhanced photothermal therapy. Int J Heat Mass Transf 106:212–221CrossRef
42.
Zurück zum Zitat Lilge SL (2013) and R. P. G. Brinkmann. Laser Induced Thermal effects in Biological tissues in Encyclopedia of Biophysics G. C. K. Roberts Ed. Springer, Berlin Heidelberg, pp 1299–1305 Lilge SL (2013) and R. P. G. Brinkmann. Laser Induced Thermal effects in Biological tissues in Encyclopedia of Biophysics G. C. K. Roberts Ed. Springer, Berlin Heidelberg, pp 1299–1305
43.
Zurück zum Zitat Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, Maslyakova GN, Navolokin NA, Genin VD, Genina EA, Tuchin VV (2022) Photothermal and photodynamic therapy of tumors with Plasmonic nanoparticles: challenges and prospects. Mater (Basel) 15(4):1606. https://doi.org/10.3390/ma15041606CrossRef Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, Maslyakova GN, Navolokin NA, Genin VD, Genina EA, Tuchin VV (2022) Photothermal and photodynamic therapy of tumors with Plasmonic nanoparticles: challenges and prospects. Mater (Basel) 15(4):1606. https://​doi.​org/​10.​3390/​ma15041606CrossRef
46.
Zurück zum Zitat Yujuan Zhang Xuelin Zhan Juan Xiong (2018) Temperature-dependent cell death patterns induced by functionalized.com/scientific reports/, 8:8720(DOI:10.1038/s41598-018-26978-1):1–8 Yujuan Zhang Xuelin Zhan Juan Xiong (2018) Temperature-dependent cell death patterns induced by functionalized.com/scientific reports/, 8:8720(DOI:10.1038/s41598-018-26978-1):1–8
Metadaten
Titel
Enhancing tumor’s skin photothermal therapy using Gold nanoparticles : a Monte Carlo simulation
verfasst von
F. Zerakni
A. S. A Dib
A. Attili
Publikationsdatum
01.12.2024
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2024
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-024-04072-5

Weitere Artikel der Ausgabe 1/2024

Lasers in Medical Science 1/2024 Zur Ausgabe