Skip to main content
Erschienen in: Clinical Autonomic Research 6/2023

Open Access 24.10.2023 | Research Article

Variability of cardioinhibition in vasovagal syncope: differences between subgroups during cardioinhibition and beyond

verfasst von: Ineke A. van Rossum, Frederik J. de Lange, David G. Benditt, Erik W. van Zwet, Marc van Houwelingen, Roland D. Thijs, J. Gert van Dijk

Erschienen in: Clinical Autonomic Research | Ausgabe 6/2023

Abstract

Purpose

We compared hemodynamic parameters between subjects with marked, intermediate and minimal cardioinhibition during vasovagal syncope.

Methods

The study included subjects with a decrease in heart rate while experiencing a complete vasovagal syncope during tilt-table testing. The subjects were classified as having marked, intermediate or minimal cardioinhibition, based on tertile values of the decrease in heart rate. Hemodynamic parameters between these groups were compared before tilt in the supine position, shortly after tilt and during cardioinhibition.

Results

A total of 149 subjects with a median age of 43 (interquartile range 24–60) years were included in the study. Among the three groups with different levels of cardioinhibition, the highest heart rate was observed in subjects with marked cardioinhibition both before and shortly after tilt and at the start of cardioinhibition. The heart rate decrease in these subjects was both larger and faster compared to subjects with minimal and intermediate cardioinhibition.

Conclusion

Subjects with marked cardioinhibition have both a larger and faster decrease in heart rate compared to subjects with intermediate and minimal cardioinhibition, as early as from the start of cardioinhibition. Marked cardioinhibition is related to differences in hemodynamic profiles already present well before the start of cardioinhibition.

Introduction

Vasovagal syncope (VVS) is the most common form of reflex syncope, with an estimated lifetime prevalence of > 30% [2, 11]. Early concepts of VVS held that the decrease in blood pressure (BP) was due primarily to a parasympathetic decrease of heart rate (HR), conventionally termed cardioinhibition (CI), and a parallel diminution of vascular tone, usually termed vasodepression (VD) [1, 8, 14, 23, 25, 30]. The latter has been regarded by some researchers as being due to a release of sympathetic arteriolar vasoconstriction, resulting in a decrease in total peripheral resistance (TPR) [30], while others did not ascribe a specific mechanism to VD [1]. Later, the importance of venous pooling during the early stages of VVS, leading to a decreasing stroke volume (SV), was acknowledged [9, 10, 14, 23, 25, 29]. We recently suggested a division of VD into ‘arterial VD,’ reflected by low TPR, and ‘venous VD,’ reflected by low SV [2527].
The relative contributions of VD and CI in VVS vary among subjects [9]. Results from tilt table test (TTT) studies have suggested a higher incidence of asystole in younger subjects [19, 20, 28], although in some studies this finding may have been biased by early termination of the procedure by tilting back in older subjects [4, 16, 19, 22]. The modified VAsovagal Syncope International Study (VASIS) criteria defined CI as a HR < 40/min for at least 10 s or asystole > 3 s. [1]
We previously proposed a novel approach to define CI regardless of absolute HR. In this definition, CI is defined as a sustained HR decrease starting abruptly in the minutes before syncope and usually ending with syncope or termination of the test with tilt down [25]. The rationale underlying this definition is based on both a theoretical and a practical consideration. First, the HR decrease in the context of the decreasing BP in VVS indicates failure of normal baroreflex action [13, 15], thereby constituting a fundamental change in circulatory control. Second, even a modest decrease of HR at the start of CI was found to be associated with an immediate further decrease of BP, showing its relevance for maintaining BP and thereby cerebral perfusion [25]. Using our novel definition, we found that CI is a near-universal feature of VVS, with a large variation in HR decrease [25].
The aim of the present study was to further assess the impact of CI by comparing subjects with marked, intermediate and minimal CI based on CI magnitude at duration, speed and the occurrence and duration of an asystolic pause in HR. In addition, we assessed whether the amount of CI was related to hemodynamic parameters, both during CI, at the start of CI and well before the start of CI, i.e. in supine and tilted positions.

Methods

Inclusion criteria

Subjects and data acquisition have been detailed previously [25]. In short, patients were included from the syncope unit of the Leiden University Medical Centre. We included subjects with a history of probable VVS [2] and those with a history of provoked VVS during TTT, with or without sublingual nitroglycerin. TTT was performed with recording of continuous finger BP (Finometer [Finapres Medical Systems., Enschede, The Netherlands] or Nexfin [BMEYE, Amsterdam, The Netherlands]), at least one electrocardiography (ECG) channel, electroencephalogram (EEG) and video recording [24].
BP and HR were measured and beat-to-beat estimates of SV and TPR were derived using Modelflow (Finapres Medical Systems). Cases with presyncope only, i.e. without video- and EEG-documented loss of consciousness during TTT, or those with additional tilt-related diagnoses were excluded.

Description of cardioinhibition

We measured the time of the start of CI (Fig. 1) as the onset of a sustained progressive decrease in HR in the minutes before syncope as follows. Four of the authors experienced with TTT (JGvD, IvR, FK, MG) were shown individual HR data without recourse to BP or clinical data, as previously described [25]. The examiners decided whether a HR decrease was present and, if so, ascertained HR at CI onset and measured the onset of CI as time prior to syncope. The beat indicating ‘minimum HR’ in the period around syncope was chosen using a consensus procedure (IvR, JGvD). The difference between HR at CI onset and minimum HR was the ‘magnitude of CI’ in beats per minute (bpm), and the time elapsed between the two events was the ‘duration of CI’ in seconds (Fig. 1). Dividing magnitude by duration yielded the ‘mean velocity of CI,’ i.e. the rate of decrease of HR, in bpm per second. We assessed presence and duration of asystolic pauses in HR ≥ 3 s. Because the minimum HR was strongly influenced by the presence of an asystolic HR pause, we also investigated CI without such pauses. To do so, we calculated ‘magnitude2,’ ‘duration2’ and ‘velocity2’ by using a shorter CI period, ending at the onset of the pause, if present (Fig. 1); if no pause was present, these parameters were the same as those in the original calculation.

Hemodynamic profiles in subjects with marked, intermediate and minimal CI

We divided subjects with CI into three subgroups with marked, intermediate or minimal CI, respectively, using tertile values of the magnitude of decrease in HR. We investigated whether these subgroups differed in duration and velocity of CI, in the occurrence of pauses ≥ 3 s and in the duration of these pauses. For each subgroup we assessed BP, HR, SV and TPR at the start of CI. In addition, we determined resting tilted and supine values for each variable. For supine values we used the mean data from − 240 s until − 20 s before the start of the head-up tilt. We similarly established mean values for the early tilted position using the period + 20 s to + 240 s after the start of the tilt up period.

Statistical analysis

Statistical tests were performed using Matlab (ver. R2019b; The MathWorks, Natick, MA, USA).
For continuous variables, normality of distribution was assessed for each of the three subgroups with the Kolmogorov–Smirnov test. Since some distributions were skewed, we used nonparametric methods for all our analyses. Accordingly, data are described with medians, ranges and interquartile ranges (IQR). Differences were investigated using the Mann–Whitney U-test and Kruskal–Wallis test for quantitative data and the Chi-square test for count data.
We investigated whether a relation between severity of CI and supine HR was due to age. To do so, we used the characteristics of the line of best fit between supine HR and age of subject to calculate residuals of supine HR, devoid of age influences. We then investigated whether the residuals differed between groups of CI severity using the Kruskal–Wallis test.
We applied the Bonferroni correction for multiple testing which resulted in a threshold for significance of p < 0.002.

Ethical considerations

The Medical Ethics Committee approved the protocol. According to the law of The Netherlands at the time of this study, the use of anonymous data gathered exclusively for patient care, as was the case here, did not require individual informed consent.

Results

Description of subjects

We included 149 subjects with a complete VVS during TTT and cardioinhibition (CI). The median age of the study group was 43 (IQR 24–60) years, and 44% were men. CI started a median of 58 s before syncope (range 200–12 s). The median decrease in HR was 65 (range 16–139) bpm with a median rate of HR decrease of 1 (range 0.1–5.1) bpm/s (Table 1; Fig. 2). Of 149 subjects, 68 (46%) had a pause in HR ≥ 3 s. The pauses started 51 (IQR 35–75) s after the start of CI and 5 (IQR 2–7) s before syncope. Median HR at the start of the pause was 43 (IQR 31–49) bpm. Median mean arterial pressure (MAP) at the start of the pause was 37 (IQR 28–43) mmHg. We had limited data for SV (20 subjects) and TPR (15 subjects) at the start of a pause ≥ 3 s; median SV was then 45 (IQR 32–74) ml and median TPR was 17 (IQR 15–24) mmHg min/L.
Table 1
Description of all subjects with complete vasovagal syncope during tilt-table test and cardioinhibition
Descriptive variables
All CI
N
149
Age, years
43 (24–60)
Male, N (%)
66 (44%)
Nitroglycerin, N (%)
99 (66%)
HR at start CI (bpm)
97 (83–113)
MAP at start CI (mmHg)
73(65–82)
SV at start CI (ml)
46 (37–57)
TPR at start CI (mmHg min/l)
17.0 (13.6–20.3)
Time from start CI till syncope
58 (45–83)
Minimum HR
35 (17–47)
Duration CI (s)
61 (46–84)
Magnitude CI (HR decrease, bpm)
68 (48–85)
Speed CI (HR decrease in bpm/s)
1 (0.7–1.6)
Duration HR pause if present (s)
6 (3–37)
Values arem reported as the median with 25–75 percentiles (interquartile rate) in parentheses except for numbers of patients (N, %)
bpm Beats per minute, CI cardioinhibition, Duration CI time from start CI till minimum HR, HR heart rate, Magnitude CI difference between HR at start CI and minimum HR, MAP mean arterial pressure, Speed CI magnitude CI divided by duration CI, SV stroke volume, TPR total peripheral resistance

Hemodynamic profiles in subjects with marked, intermediate and minimal CI, respectively

The three subgroups with marked, intermediate and minimal CI differed in age and sex, with subjects with marked CI being younger and more often women than subjects with minimal CI (Table 2). The velocity of CI was higher in subjects with marked CI (p < 0.001).
Table 2
Hemodynamic parameters of subjects with vasovagal syncope with marked, minimal and intermediate cardioinhibition, respectively
 
Marked CI
Intermediate CI
Minimal CI
p value
N
50
52
47
 
Age (years)
34 (19–45)
42 (24–60)
51 (36–66)
< 0.001*
Male, N (%)
16 (32)
21 (40)
29 (62)
0.01
Asystole, N (%)
42 (84)
20 (38)
6 (13)
< 0.001*
Nitroglycerin, N (%)
38 (76)
36 (69)
25 (53)
0.05
Time until syncope (s)
534 (306–720)
606 (323–836)
612 (343–870)
0.54
Minimum HR (bpm)
10 (6–17)
32 (17–48)
44 (33–57)
< 0.001*
Magnitude CI (bpm)
98 (87–107)
66 (58–74)
38 (29–47)
< 0.001*
Duration CI (s)
62 (39–85)
74 (48–89)
78 (50–88)
0.096
Speed CI (bpm/s)
1.9 (1.2–2.4)
1.1 (0.7–1.3)
0.6 (0.3–0.9)
< 0.001*
CI parameters until start asystole
Magnitude2
70 (58–82)
56 (46–64)
35 (27–44)
< 0.001*
Duration2
53 (34–77)
63 (46–86)
63 (47–88)
0.024
Speed2
1.5 (1.0 – 2.0)
0.79 (0.6–1.2)
0.5 (0.3–0.8)
< 0.001*
hemodynamic at start CI
HR at start CI (bpm)
111 (100–121)
98 (84–114)
82 (79–93)
< 0.001*
MAP at start CI (mmHg)
81 (69–89)
75 (67–82)
71 (65–79)
0.02
SV at start CI (ml)
44 (33–54)
49 (34–61)
54 (41–68)
0.02
TPR at start CI (mmHg min/L)
18 (13–22)
18 (13–20)
18 (14–20)
0.93
Hemodynamic supine
HR supine (bpm)
74 (66–82)
73 (65–79)
64 (57–70)
< 0.001*
MAP supine (mmHg)
86 (75–95)
86 (75–93)
80 (71–89)
0.2
SV supine (ml)
83 (72–98)
89 (80–103)
94 (78–108)
0.02
TPR supine (mmHg min/L)
15 (12–18)
14 (11–16)
15 (11–18)
0.6
Hemodynamic after tilt
HR after tilt (bpm)
87 (79–95)
84 (74–92)
73 (65–82)
< 0.001*
MAP after tilt (mmHg)
95 (82–103)
94 (84–100)
89 (79–101)
0.2
SV after tilt (L)
62 (53–71)
67 (58–80)
71 (60–81)
0.02
TPR after tilt (mmHg min/L)
19 (14–22)
18 (14–20)
18 (14–22)
0.7
Values are reported as the median with 25–75 percentiles (interquartile rate) in parentheses. Group comparisons were made using Mann–Whitney and Chi-square test when applicable
*Significant difference at p = 0.002 after Bonferroni correction
Duration2 Time from start CI till start of HR pause, Magnitude2 difference between HR at start CI and HR at start of HR pause. Speed2 Magnitude2 divided by Duration2
The magnitude of CI was inversely related to median HR at the start of CI; subjects with marked CI had the highest HR at the start of CI, while subjects with minimal CI had the lowest HR at the start of CI, with those with intermediate CI falling in between. This difference in HR between the three subgroups was not restricted to the start of CI, as subjects with marked CI also had a higher baseline HR, both in the supine and in the tilted position. SV tended to be lower in subjects with marked CI, both at the start of CI and in the supine position and tilted position, although the difference was not statistically significant. HR increased in the minutes before the start of CI only in subjects with marked CI (Table 2; Fig. 3).
Supine HR was linearly related to age (Fig. 3; p = 0.006) with HR decreasing by only 1.3 bpm per decade. Residuals differed between groups of CI severity (Kruskal–Wallis, p < 0.00001); post-hoc tests showed differences between marked and minimal CI (p < 0.0001), between intermediate and minimal CI (p = 0.0002), but not between marked and intermediate CI (p = 0.87).
The occurrence of HR pauses was associated with CI magnitude: an asystolic pause of ≥ 3 s occurred in 84% of subjects with marked CI, 38% of those with intermediate CI and 13% in subjects with minimal CI (p < 0.001). The duration of a pause did not differ significantly between the three subgroups, although median duration increased in the order marked, from intermediate to minimal CI. Analysis of CI without the influence of pauses (Table 2) showed that magnitude2 and velocity2, but not duration2, differed significantly between the three subgroups, in the sense that both magnitude and velocity were larger in subjects with marked CI than in those with minimal CI and intermediate CI in between; these results showed that pauses were not the sole expression of differences in severity of CI.

Discussion

This study of CI in subjects with TTT-induced VVS revealed two novel findings. First, subjects with marked CI had a different course of CI, with a faster decrease in HR and a higher frequency, but not a longer duration of an asystolic pause, compared to subjects with minimal CI. Second, subjects with marked CI had a different hemodynamic profile, with a higher HR, compared to subjects with minimal CI, that was already present in the supine position, well before the start of CI.

Cardioinhibition in VVS

The percentage of subjects with CI we reported in this study was higher than that in some other tilt-table studies, possibly due in part due to our novel definition of CI, according to which small decreases in HR are still recognized as CI. In addition, 42% of our subjects had an asystolic pause in HR ≥ 3 s, which is higher than the 6–32% described in the literature [4]. Our high rate of pause in HR is probably due to our strict inclusion criteria, with only subjects with complete syncope documented with video EEG, as the occurrence of CI and asystole during a TTT strongly depends on decisions when to tilt back [20, 28].
HR showed pronounced interindividual variability at the start of an HR pause ≥ 3 s, indicating that it is not a low HR itself that induced a pause. In those with a pause, SV just prior to the start of asystole was similar to SV at the start of CI. Although this result is hampered by limited data, it pleads against the ‘empty heart theory’ as a trigger for a pause in HR [18].

Hemodynamic profiles in subjects with marked, intermediate and minimal CI

Although all subjects had CI, the degree of CI, reflected by CI magnitude (i.e. HR decrease) and speed of CI, varied considerably. CI magnitude was associated with both age and gender; the group with marked CI was younger and consisted of more women than the group with weak CI, with the intermediate group lying in between; this result is in line with previous studies on CI related to age [16, 19, 20, 22]. A novel finding was that subjects with marked CI had higher HR and lower SV, not only at the start of CI, but already in the supine position before upright tilt. This relation between severity of CI and supine HR was not explained through effects of age, as supine HR decreased only with 1.3 bpm/decade and subjects with marked HR had the highest supine HR at all ages.
We defined subgroups based on HR decrease, so by definition subjects with marked CI had the largest CI magnitude. An interesting new finding was that the speed of HR decrease was also higher in subjects with marked CI, as early as from the start of CI and regardless of the occurrence of a pause in HR.
A novel finding regarding HR pauses was that the duration of a pause did not depend on CI magnitude, although a pause occurred more frequently in those with marked CI.
In subjects with marked CI, we noted a short increase in HR just before the start of CI, which was not present in subjects with weak or intermediate CI. At this point in time, just before the start of CI, BP was already gradually decreasing in all subgroups. The final increase in HR in the strong CI subgroup can be seen as a last-ditch physiological attempt to increase BP. This HR increase in the strong CI subgroup, which contained younger subjects, is in line with the previous finding that BP regulation depends stronger on HR in the young and more on TPR in the elderly [28].

Limitations

There are a number of limitations to this study. First, we studied tilt-induced VVS, which means that hemodynamic changes might differ from those in spontaneous VVS. There is some evidence that bradycardia might be more prominent in ‘real-life’ VVS compared to tilt-induced VVS, so we may have underestimated CI magnitude or speed [17]. Second, while we studied a large number of subjects (N = 149) with complete VVS and CI, some data were missing around syncope, especially for SV and TPR. Third, the division according to magnitude of CI was linked to differences in age and sex between the groups. We did not attempt to correct for sex while evaluating CI severity. However, as sex is known to affect both CI in VVS and hemodynamic parameters, this might have affected our results [5, 7, 12, 19, 28]. Fourth, we used Modelflow, which estimates SV and subsequently CO and TPR from BP waveform, instead of direct intra-arterial measurement or thermodilution measurement. Modelflow is known to have some limitations in terms of accuracy of absolute values of CO and related variables, especially when mean arterial pressure drops < 60 mmHg and when large abrupt TPR changes occur [3, 6, 21]. However, as Modelflow has been shown to reliably measure relative changes in hemodynamic parameters, we believe that the effect of any Modelflow inaccuracy on the present findings is limited, as we also described in more detail previously [25].

Clinical implications

We have identified two features that may help identify subjects with marked CI in an early stage: first, such subjects had a higher HR already in the supine position; and, second, their HR declined faster from the start of CI.

Conclusion

Subjects with marked, intermediate and minimal CI had a different course of CI and different hemodynamic profiles both during CI and before the start of CI, as early as in the supine position. Our findings help to further understand the occurrence and differences of cardioinhibition in VVS and may aid to improving treatment strategies.

Declarations

Conflict of interest

Ineke A. van Rossum reports no conflicts of interest. Frederik J. de Lange reports no conflicts of interest. David G. Benditt reports no conflicts of interest. Erik W. van Zwet reports no conflicts of interest. Marc van Houwelingen works for Philips, but this particular research work does not conflict with his work there. Roland D. Thijs has received speaker or consultancy fees from Theravance Biopharma, Arvelle, Medtronic, Zogenix, Xenon, Angelini, UCB, NewLife Wearables and Novartis. J. Gert van Dijk reports no conflicts of interest.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

Neuer Inhalt

Print-Titel

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

Literatur
1.
Zurück zum Zitat Brignole M, Menozzi C, Del Rosso A, Costa S, Gaggioli G, Bottoni N, Bartoli P, Sutton R (2000) New classification of haemodynamics of vasovagal syncope: beyond the VASIS classification. Analysis of the pre-syncopal phase of the tilt test without and with nitroglycerin challenge. Vasovagal Syncope Int Study Europace 2:66–76 Brignole M, Menozzi C, Del Rosso A, Costa S, Gaggioli G, Bottoni N, Bartoli P, Sutton R (2000) New classification of haemodynamics of vasovagal syncope: beyond the VASIS classification. Analysis of the pre-syncopal phase of the tilt test without and with nitroglycerin challenge. Vasovagal Syncope Int Study Europace 2:66–76
2.
Zurück zum Zitat Brignole M, Moya A, de Lange FJ, Deharo JC, Elliott PM, Fanciulli A, Fedorowski A, Furlan R, Kenny RA, Martin A, Probst V, Reed MJ, Rice CP, Sutton R, Ungar A, van Dijk JG (2018) 2018 ESC guidelines for the diagnosis and management of syncope. Eur Heart J 39:1883–1948CrossRefPubMed Brignole M, Moya A, de Lange FJ, Deharo JC, Elliott PM, Fanciulli A, Fedorowski A, Furlan R, Kenny RA, Martin A, Probst V, Reed MJ, Rice CP, Sutton R, Ungar A, van Dijk JG (2018) 2018 ESC guidelines for the diagnosis and management of syncope. Eur Heart J 39:1883–1948CrossRefPubMed
3.
Zurück zum Zitat Critchley LA, Lee A, Ho AM (2010) A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Analg 111:1180–1192CrossRefPubMed Critchley LA, Lee A, Ho AM (2010) A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Analg 111:1180–1192CrossRefPubMed
4.
Zurück zum Zitat de Jong JSY, Jardine DL, Lenders JWM, Wieling W (2020) Pacing in vasovagal syncope: a physiological paradox? Heart Rhythm 17:813–820CrossRefPubMed de Jong JSY, Jardine DL, Lenders JWM, Wieling W (2020) Pacing in vasovagal syncope: a physiological paradox? Heart Rhythm 17:813–820CrossRefPubMed
5.
Zurück zum Zitat Diaz-Canestro C, Sehgal A, Pentz B, Montero D (2022) Sex specificity in orthostatic tolerance: the integration of haematological, cardiac, and endocrine factors. Eur J Prev Cardiol 29:e246–e248CrossRefPubMed Diaz-Canestro C, Sehgal A, Pentz B, Montero D (2022) Sex specificity in orthostatic tolerance: the integration of haematological, cardiac, and endocrine factors. Eur J Prev Cardiol 29:e246–e248CrossRefPubMed
6.
Zurück zum Zitat Dyson KS, Shoemaker JK, Arbeille P, Hughson RL (2010) Modelflow estimates of cardiac output compared with Doppler ultrasound during acute changes in vascular resistance in women. Exp Physiol 95:561–568CrossRefPubMed Dyson KS, Shoemaker JK, Arbeille P, Hughson RL (2010) Modelflow estimates of cardiac output compared with Doppler ultrasound during acute changes in vascular resistance in women. Exp Physiol 95:561–568CrossRefPubMed
7.
Zurück zum Zitat Fedorowski A, Rivasi G, Torabi P, Johansson M, Rafanelli M, Marozzi I, Ceccofiglio A, Casini N, Hamrefors V, Ungar A, Olshansky B, Sutton R, Brignole M, Parati G (2021) Underlying hemodynamic differences are associated with responses to tilt testing. Sci Rep 11:17894CrossRefPubMedPubMedCentral Fedorowski A, Rivasi G, Torabi P, Johansson M, Rafanelli M, Marozzi I, Ceccofiglio A, Casini N, Hamrefors V, Ungar A, Olshansky B, Sutton R, Brignole M, Parati G (2021) Underlying hemodynamic differences are associated with responses to tilt testing. Sci Rep 11:17894CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Fenton AM, Hammill SC, Rea RF, Low PA, Shen WK (2000) Vasovagal syncope. Ann Intern Med 133:714–725CrossRefPubMed Fenton AM, Hammill SC, Rea RF, Low PA, Shen WK (2000) Vasovagal syncope. Ann Intern Med 133:714–725CrossRefPubMed
9.
Zurück zum Zitat Fu Q, Verheyden B, Wieling W, Levine BD (2012) Cardiac output and sympathetic vasoconstrictor responses during upright tilt to presyncope in healthy humans. J Physiol 590:1839–1848CrossRefPubMedPubMedCentral Fu Q, Verheyden B, Wieling W, Levine BD (2012) Cardiac output and sympathetic vasoconstrictor responses during upright tilt to presyncope in healthy humans. J Physiol 590:1839–1848CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Fuca G, Dinelli M, Suzzani P, Scarfo S, Tassinari F, Alboni P (2006) The venous system is the main determinant of hypotension in patients with vasovagal syncope. Europace 8:839–845CrossRefPubMed Fuca G, Dinelli M, Suzzani P, Scarfo S, Tassinari F, Alboni P (2006) The venous system is the main determinant of hypotension in patients with vasovagal syncope. Europace 8:839–845CrossRefPubMed
11.
Zurück zum Zitat Ganzeboom KS, Mairuhu G, Reitsma JB, Linzer M, Wieling W, van Dijk N (2006) Lifetime cumulative incidence of syncope in the general population: a study of 549 Dutch subjects aged 35–60 years. J Cardiovasc Electrophysiol 17:1172–1176CrossRefPubMed Ganzeboom KS, Mairuhu G, Reitsma JB, Linzer M, Wieling W, van Dijk N (2006) Lifetime cumulative incidence of syncope in the general population: a study of 549 Dutch subjects aged 35–60 years. J Cardiovasc Electrophysiol 17:1172–1176CrossRefPubMed
12.
Zurück zum Zitat Ghariq M, Thijs RD, Bek LM, van Zwet EW, Benditt DG, van Dijk JG (2020) A higher proportion of men than of women fainted in the phase without nitroglycerin in tilt-induced vasovagal syncope. Clin Auton Res 30:441–447CrossRefPubMedPubMedCentral Ghariq M, Thijs RD, Bek LM, van Zwet EW, Benditt DG, van Dijk JG (2020) A higher proportion of men than of women fainted in the phase without nitroglycerin in tilt-induced vasovagal syncope. Clin Auton Res 30:441–447CrossRefPubMedPubMedCentral
13.
14.
Zurück zum Zitat Jardine DL, Wieling W, Brignole M, Lenders JWM, Sutton R, Stewart J (2018) The pathophysiology of the vasovagal response. Heart Rhythm 15:921–929CrossRefPubMed Jardine DL, Wieling W, Brignole M, Lenders JWM, Sutton R, Stewart J (2018) The pathophysiology of the vasovagal response. Heart Rhythm 15:921–929CrossRefPubMed
15.
Zurück zum Zitat Kaufmann H, Norcliffe-Kaufmann L, Palma JA (2020) Baroreflex dysfunction. N Engl J Med 382:163–178CrossRefPubMed Kaufmann H, Norcliffe-Kaufmann L, Palma JA (2020) Baroreflex dysfunction. N Engl J Med 382:163–178CrossRefPubMed
16.
Zurück zum Zitat Kurbaan AS, Bowker TJ, Wijesekera N, Franzen AC, Heaven D, Itty S, Sutton R (2003) Age and hemodynamic responses to tilt testing in those with syncope of unknown origin. J Am Coll Cardiol 41:1004–1007CrossRefPubMed Kurbaan AS, Bowker TJ, Wijesekera N, Franzen AC, Heaven D, Itty S, Sutton R (2003) Age and hemodynamic responses to tilt testing in those with syncope of unknown origin. J Am Coll Cardiol 41:1004–1007CrossRefPubMed
17.
Zurück zum Zitat Moya A, Brignole M, Menozzi C, Garcia-Civera R, Tognarini S, Mont L, Botto G, Giada F, Cornacchia D, International Study on Syncope of Uncertain Etiology I (2001) Mechanism of syncope in patients with isolated syncope and in patients with tilt-positive syncope. Circulation 104:1261–1267CrossRefPubMed Moya A, Brignole M, Menozzi C, Garcia-Civera R, Tognarini S, Mont L, Botto G, Giada F, Cornacchia D, International Study on Syncope of Uncertain Etiology I (2001) Mechanism of syncope in patients with isolated syncope and in patients with tilt-positive syncope. Circulation 104:1261–1267CrossRefPubMed
18.
Zurück zum Zitat Novak V, Honos G, Schondorf R (1996) Is the heart ‘empty’ at syncope? J Auton Nerv Syst 60:83–92CrossRefPubMed Novak V, Honos G, Schondorf R (1996) Is the heart ‘empty’ at syncope? J Auton Nerv Syst 60:83–92CrossRefPubMed
19.
Zurück zum Zitat Rivasi G, Torabi P, Secco G, Ungar A, Sutton R, Brignole M, Fedorowski A (2021) Age-related tilt test responses in patients with suspected reflex syncope. Europace 23:1100–1105CrossRefPubMed Rivasi G, Torabi P, Secco G, Ungar A, Sutton R, Brignole M, Fedorowski A (2021) Age-related tilt test responses in patients with suspected reflex syncope. Europace 23:1100–1105CrossRefPubMed
20.
Zurück zum Zitat Russo V, Parente E, Groppelli A, Rivasi G, Tomaino M, Gargaro A, Giacopelli D, Ungar A, Parati G, Fedorowski A, Sutton R, van Dijk JG, Brignole M (2022) Prevalence of asystole during tilt test-induced vasovagal syncope may depend on test methodology. EP Europace 25:263–269CrossRef Russo V, Parente E, Groppelli A, Rivasi G, Tomaino M, Gargaro A, Giacopelli D, Ungar A, Parati G, Fedorowski A, Sutton R, van Dijk JG, Brignole M (2022) Prevalence of asystole during tilt test-induced vasovagal syncope may depend on test methodology. EP Europace 25:263–269CrossRef
21.
Zurück zum Zitat Schloglhofer T, Gilly H, Schima H (2014) Semi-invasive measurement of cardiac output based on pulse contour: a review and analysis. Can J Anaesth 61:452–479CrossRefPubMed Schloglhofer T, Gilly H, Schima H (2014) Semi-invasive measurement of cardiac output based on pulse contour: a review and analysis. Can J Anaesth 61:452–479CrossRefPubMed
22.
Zurück zum Zitat Schroeder C, Tank J, Heusser K, Diedrich A, Luft FC, Jordan J (2011) Physiological phenomenology of neurally-mediated syncope with management implications. PLoS ONE 6:e26489CrossRefPubMedPubMedCentral Schroeder C, Tank J, Heusser K, Diedrich A, Luft FC, Jordan J (2011) Physiological phenomenology of neurally-mediated syncope with management implications. PLoS ONE 6:e26489CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Thijs RD, Brignole M, Falup-Pecurariu C, Fanciulli A, Freeman R, Guaraldi P, Jordan J, Habek M, Hilz M, Traon AP, Stankovic I, Struhal W, Sutton R, Wenning G, Van Dijk JG (2021) Recommendations for tilt table testing and other provocative cardiovascular autonomic tests in conditions that may cause transient loss of consciousness: consensus statement of the European Federation of Autonomic Societies (EFAS) endorsed by the American Autonomic Society (AAS) and the European Academy of Neurology (EAN). Clin Auton Res 233:102792 Thijs RD, Brignole M, Falup-Pecurariu C, Fanciulli A, Freeman R, Guaraldi P, Jordan J, Habek M, Hilz M, Traon AP, Stankovic I, Struhal W, Sutton R, Wenning G, Van Dijk JG (2021) Recommendations for tilt table testing and other provocative cardiovascular autonomic tests in conditions that may cause transient loss of consciousness: consensus statement of the European Federation of Autonomic Societies (EFAS) endorsed by the American Autonomic Society (AAS) and the European Academy of Neurology (EAN). Clin Auton Res 233:102792
25.
Zurück zum Zitat van Dijk JG, Ghariq M, Kerkhof FI, Reijntjes R, van Houwelingen MJ, van Rossum IA, Saal DP, van Zwet EW, van Lieshout JJ, Thijs RD, Benditt DG (2020) Novel methods for quantification of vasodepression and cardioinhibition during tilt-induced vasovagal syncope. Circ Res 127:e126–e138PubMed van Dijk JG, Ghariq M, Kerkhof FI, Reijntjes R, van Houwelingen MJ, van Rossum IA, Saal DP, van Zwet EW, van Lieshout JJ, Thijs RD, Benditt DG (2020) Novel methods for quantification of vasodepression and cardioinhibition during tilt-induced vasovagal syncope. Circ Res 127:e126–e138PubMed
27.
Zurück zum Zitat van Dijk JG, van Rossum IA, Thijs RD (2021) The pathophysiology of vasovagal syncope: novel insights. Auton Neurosci 236:102899CrossRefPubMed van Dijk JG, van Rossum IA, Thijs RD (2021) The pathophysiology of vasovagal syncope: novel insights. Auton Neurosci 236:102899CrossRefPubMed
28.
Zurück zum Zitat van Dijk JG, van Rossum IA, van Houwelingen M, Ghariq M, Saal DP, de Lange FJ, Thijs RD, Sutton R, Benditt DG (2022) Influence of age on magnitude and timing of vasodepression and cardioinhibition in tilt-induced vasovagal syncope. JACC Clin Electrophysiol 8:997–1009CrossRefPubMed van Dijk JG, van Rossum IA, van Houwelingen M, Ghariq M, Saal DP, de Lange FJ, Thijs RD, Sutton R, Benditt DG (2022) Influence of age on magnitude and timing of vasodepression and cardioinhibition in tilt-induced vasovagal syncope. JACC Clin Electrophysiol 8:997–1009CrossRefPubMed
29.
Zurück zum Zitat Verheyden B, Liu J, van Dijk N, Westerhof BE, Reybrouck T, Aubert AE, Wieling W (2008) Steep fall in cardiac output is main determinant of hypotension during drug-free and nitroglycerine-induced orthostatic vasovagal syncope. Heart Rhythm 5:1695–1701CrossRefPubMed Verheyden B, Liu J, van Dijk N, Westerhof BE, Reybrouck T, Aubert AE, Wieling W (2008) Steep fall in cardiac output is main determinant of hypotension during drug-free and nitroglycerine-induced orthostatic vasovagal syncope. Heart Rhythm 5:1695–1701CrossRefPubMed
30.
Zurück zum Zitat Wieling W, Jardine DL, de Lange FJ, Brignole M, Nielsen HB, Stewart J, Sutton R (2016) Cardiac output and vasodilation in the vasovagal response: an analysis of the classic papers. Heart Rhythm 13:798–805CrossRefPubMed Wieling W, Jardine DL, de Lange FJ, Brignole M, Nielsen HB, Stewart J, Sutton R (2016) Cardiac output and vasodilation in the vasovagal response: an analysis of the classic papers. Heart Rhythm 13:798–805CrossRefPubMed
Metadaten
Titel
Variability of cardioinhibition in vasovagal syncope: differences between subgroups during cardioinhibition and beyond
verfasst von
Ineke A. van Rossum
Frederik J. de Lange
David G. Benditt
Erik W. van Zwet
Marc van Houwelingen
Roland D. Thijs
J. Gert van Dijk
Publikationsdatum
24.10.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Autonomic Research / Ausgabe 6/2023
Print ISSN: 0959-9851
Elektronische ISSN: 1619-1560
DOI
https://doi.org/10.1007/s10286-023-00991-5

Weitere Artikel der Ausgabe 6/2023

Clinical Autonomic Research 6/2023 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Blutdrucksenkung schon im Rettungswagen bei akutem Schlaganfall?

31.05.2024 Apoplex Nachrichten

Der optimale Ansatz für die Blutdruckkontrolle bei Patientinnen und Patienten mit akutem Schlaganfall ist noch nicht gefunden. Ob sich eine frühzeitige Therapie der Hypertonie noch während des Transports in die Klinik lohnt, hat jetzt eine Studie aus China untersucht.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Hörschwäche erhöht Demenzrisiko unabhängig von Beta-Amyloid

29.05.2024 Hörstörungen Nachrichten

Hört jemand im Alter schlecht, nimmt das Hirn- und Hippocampusvolumen besonders schnell ab, was auch mit einem beschleunigten kognitiven Abbau einhergeht. Und diese Prozesse scheinen sich unabhängig von der Amyloidablagerung zu ereignen.